AD-A286 826 e
TR

SOFTWARE ENGINEERING IN Ada

Presented by: Capt David Vega
® 3390th Technical Training Group
Keesler Air Force Base, MS

Sponsored by: Ada Joint Program Office {OSD)

Organized by: Herbert E. Cohen
US Army Materiel Systems
Analysis Activity
Aberdeen Proving Greund,
Maryland

DIIC QUALITY INGPE.CTER &

@ U S ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING GROUND, MARYLAND

/

-

 DISCLATHER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED T0 DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

"

RITY CLA TJION OF THIS PA

Unclassified

‘0D Form 1473, JUN 86 Previous editions are obsolete.

LASMFICATI| =y PA -
Form Approved
REPORT DOCUMENTAT!ON PAGE OMB No. 0704-0188
P ——— E—
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
lassified
(URITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
26, DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 78. NAME OF MONITORING ORGANIZATION
L (' applicabla)
€ AMSAA AMXSY-MP Same as 6
P — R .
6c. ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (City, Stste, and 2'P CCOe)
‘pcAberdeen Proving Ground, MD 21005-5071
8a. NAME OF FUNDING / SPONSORING b, OFFICE SYMBOL | 9. PRGCUREMENT INSTRUMENT IDENTIFICATION NUMBEK ‘
ORGANIZATION (If applicable)
Ada Joint Program Office (OSD)
| 8c. ADDRESS (City, State, and 2iP Code) 10 SOURCE OF FUNCING NUMBERS
The Pentagon PROGRAM PROJECT TASK WORK UNIT
Washington, D.C. 20301-3081 ELEMENT NO. NO. NO. JACCESSION NO.
77 TITLE (include Securrty Classification)
Software Engineering in Ada (u). Ai
12RERSONAL AUTHOR(S)
- ohen (Organizer)
m ————————d
__ “PTYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [1S. PAGE COUNT
Final : FROM_________TO 88/03/22 331
16. SUPPLEMENTARY NOTATION 1
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necassary and identify by block number)
FIELD GROUP SUB-GROUP Fundementals in Ada, types, control structures, sub
programs, packages, exceptions, generics, tasks,
programw design
19. ABSTRACT (Continue on reverse if necessary and identify by biock number)
Provides a detailed course in Software Engineering in Ada.
¥
95-01574
U T
7C QUALITY INSPECTED &
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT : 21, ABSTRACT SECURITY CLASSIFICATION
. CLASSIFIEDUNLIMITED [SAME AS RPT. [OTIC USERS Unclassified
L ME OF RESPONSIBLE INDIVIDUAL .J22b. TELEPHONE (inciude Ares Code) [22¢ OFFICE SYMBOL
Herbert F. Cohen ; 278-2785/6577 -

ACKNOWLEDGEMENTS

T would like to take this opportunity in behalf of the Ada Joint Program
Office (0SD) and the US Army Materiel Systems Analysis Activity (AMSAA) to
express my deep appreciation to CPT David Vega of the 3390th Technical
Training Group, Keesler Air Force Base, Mississippi for am outstanding lecture
series in software engineering., Mr, Lou Puckett of the 3300th Technical
Training Wing and CPT William Frey of the 3390th Technical Training Group at
Kessler AFB provided invaluable assistance in coordinating this program'for
which I am also deeply indebted. The producer/director of the video production,
Mr. Jim Blum of Det2, 1365 AV at Keesler AFB, did an outstanding professional
Jjob.

The road to final production of these tapes was long and hard but it
could not have been achieved without the support of two distinguished officers
from the Ada Joint Program Office (0SD). My very sincere appreciation is
extended to LTC(P) David Taylor and MAJ Allen Kopp (AF) of the AJPO (0SD) for
their support and wish them the very best in their future assignments.

Herbert E. Cohen

US Army Materiel Systems Analysis
Activity

Aberdeen Proving Ground, MD

Accession Yor

RTIS QRAXI &
d
O

PTIC TAB
Unanncunced
Justification

By
Distribution/-

Svailability‘podea
Avail and/or
Mot Spealad-.

4

N
®

1.

REQUEST FOR VIDEO TAPES AND TEXT

DOD and other government agencies may obtain copies of tapes and text

through the nearest local Training and Audio Visual Support Center.

2.
3.

5.

Reference tapes by SAV PIN# 505195.

Army/Navy and other government agencies should reguest tapes by writing:
Department of the Army
) US Army Visual Information Center
Joint Visual Information Activity
ATTN: ASNV-QJVP-CM
Tobyhanna Army Depot, PA 18466-5102

..o PHONE: - (737).590-7063
.- 150-‘-“. ‘:'i- "ll:z.h":‘- -fr-';‘zﬁ&.:"“

-~ -
- - -—

‘Air_Force activities can Fequest tapes by writing:

AFCVIL

1352nd AVS/D0OSQ

Bidg #248

Norton AFB, CA 92409-5996

Tapes will be in standard DOD 3/4 inch video cassette; however, 1/2 inch

VHS formats may also be available on request.

6.

The general public can obtain tapes at minimal cost, in any of the formats

specified above, by writing to:

7.

National Audio Visual Center
GSA

ATTN: Order Section
Washington, DC 20409

For additional information, contact:

Ada Joint Program Office
Rm 3E114

The Pentagon

Washington, DC 20301-3081

(202) 694-0210
224-0210

PHONE :
AUTOVON

or

Director

US Army Materiel Systems Analysis Activity
ATTN: AMXSY-MP (Herbert Cohen)

Aberdeen Proving Ground, MD 21005-5071

PHONE :
AUTOVON

(301) 278-2785/6577
298-2785/6577

Y
Q

@

LECTURER

CPT David Vega

3390th Technical Training Group
Keesler Afr Force Base, MS

.
3

Text No. 1.

Text No. 2.

Text No, 3.

TEXT

Fundamentals of Ada Programming/Software Engireering
(Note-tasking Guide) - 90P-890

Fundamentals of Ada Programming/Software Engineering
(Study Guide/Workbook) - 90P-893

Object Oriented Design - 90P-886

HANDOUT 90P-890

g E30AR4924 004
] E408T4924 020

Technical Training

_Fundamentals of Ada Programming/Soﬂware Engineering

- -
¢ 4 -)
- .

- - - - -
g L et . - -
- T -, -

__ TIRUL L ARG bl

-

October 1987
& Ry

USAF TECHNICAL TRAINING SCHOOGL.
3390 Technical Training Group
' Keesler Air Force Base, Mississippi 39534-5000

Authorized for ATC Course Use

DO NOT USE ON THE JOB

ATC Form 214 JAN 08 PREVIOUS SRITIONS ARE OSSO LEYSE, STANDARD COVERINMIRTY

\‘

33%) Technical Truining Group HO 90P-8%0
Keesler AFB, Massissippi 39534-5000 EMOAR4924 04
| 1:30ST4924 020

‘ Devember 1987
¢
N

NOTE-TAKING GUIDE
Philosophy

The philosophy of the Wing emerges from a deep concem loe individual Aw Force mien and wamen and the aced to proside hgh
ly truined und motivated personncl 1 sustuin the mission of the Air Foree. We believe the abilities. wonth, seli-respect. and dip
nity ol cach sMudent must be fully recognized. We belicve cuch must be provided the opportunity (o pursue and masier an oceu:
pational specialty 1o the full extent of the individual s capubditics und aspirations lor the immediate and contiauing begetit of the
individual, the Air Forve. DOD. and the country. To these ends, we provide opparianities tor itdividual dovelopment of il
, technical proficiencies, on-the-job teuining in challenging job assgenmtents, and inllow-on growth as supervisors §n support of
this individual development, and to facilitute maximum growth of its students, the Wing encourages and suppons the pratession-

. a2, development of its fuculty and sdministratons. and actively promutes innovation through rescarch and the sharing of concedis
and mutenal with other educational institutions,
Contents
Chapmer e Page
I. Fendumentals of Ada Sysiems
Sultware EQgineering ..o TN 1
Ada Languape FCalures (oo U Y
Ada Program LIDrary ... SRR
SunpIe Control SIIUCTUINS Lo e e e R PR
Sunple Iaput’OuIput ..o e . e b3
(‘. Basic Ada Types
‘ PUFPONE OF TYPIRE <ot e e e ee e e P TO PR 2
TWPe DRCHITHIOND L. i et e e e e a e e e 21
Object Declarations ..o e e TR
BT TN L i e e e e . 24
COompPosiie TYPUS Lo e e e e 2-10
OIer TYPES i e e RS
X Control Structums
Seructured PROgIamMmIINg . o e e e e e e e KN |
SUQUUNTIAL Lot et e et h s e e b e e e va et ar e e e et ae s et ien e R
LT Tt T T Y P 1.5
LRIV G i e e e e e e e e e e ¥
<4 Subprograns
" T Ly L)
Proceduresocoveviinniecees e ettt ia e et e ta e e e e e el e ea e b e e e aaehh s et b e et et e a st aaaeatetee vaas 4.1
. Functions .._........... . Chetrereaiiieseriteiiniasins N oAt eetsen et e hh e rb e aa s e e e i et sa s et ras 4.6
5. Packages .
7T 3 L PP PO 51
SPCCHIBOUIIN Lo uitii ittt et iete ettt et e rr hiessaahte b et s re el aaeasranntearanssaatreesostossnsenes te erensstieionrnes A
Bady e e e eree et e et e e eare et ta e i o S8
Private Types oo, N R TR hIY
APPICANONS OF POCRIRUN oo e e e BUNN I
@
i

6. Exceptions
Pumpose ... G TN B TR Cea e e, o
Declanng Exceptionscooooviiivinninin, Ee e e e e e et e h e e e e et e et es raaereas -
Exception Handlencoooviiiininnien o S P e)
Ruising BExceplions ..o e v N S 0-4
Propugation ... cevivesaa S e e e 6-5

7. Genenies
PUPUNC .10iuniiuriimenroreisonaaintatssntinsinssesassenanssransesssnionerenine e PN TR 7-1
GeNETIC DOCIMPUIIINN L1\ oveiererenrereeieenreiereiariaretnressrmnesinsertsensssonessiornses erras ettt e e 74
AORNCTIC IIRENTIMLIOND oo\ iiiiiietiiiiesisieisiseietneesesesossestsorsessaensss obonresassessrecersossanesensees Crerrresaens e 74
GENCRIC PURBINCICIN ...oiiiiiiiiiiiiiiiointsetesnsosinesenstersnessirssisinses et eriaee erhetea et arre e e 7-5
Generic Fornul Puriimeten .ooovviiiiiiiiioieiiinseiinstaainnninens e e e e et e e e et i e 2.7
GeneriC BOIES oot e e Ee et e e e r e Eearre et et e e e e 79

¥. Tasks
Purpose ...l e v et eree e e s e e s reeaeeen -1
Independent Tasks oo, e e e o R-1
Communicating Taska ... e e e
Tasking SWICINENIN ..ot e e RPN 24 B

[\]

e & o o o

(-

FUNDAMENTALS OF Ada SYSTEMS

Software Engineering

Ada Language Features
Program Library

Simpie Control Structurss
Simple tnput/Output

Host Computer Qperations

SOFTWARE ENGINEERING

THE CRITICALITY OF SOFTWARE

Mardware is no longer the dcominant factor in the
hardware/software relationship

— Cost

— Technology

The demand for software is rising exponentially

The cist of software is rising exponentially

Software maintenance is the dominant sottware activity
Systems are getting more compiex

Lite and property are dependent on software

CHARACTERISTICS OF " -\D SOFTWARE

. Expensive
Incotrect
Unreliable
Rifficutt to predict
Unmaintainable
Not reusable

Student Notes:

F1

F2

F-3

Fundamentals of Ada Systems 11

F4a

-6

1-2

Student Notes:

Fundamentals of Ada Systems

FACTORS AFFECTING DOD SOFTWARE

ignorance of ife cycle imiplications
Lack of standards

Lack of methodologies

inadequate suppon tools
Management

Software professionals

CHARACTERISTICS OF DOD
SOFTWARE REQUIREMENTS

Large

Compiex

Long hved

High rehabiity
Time constraints
Suze constraints

THE FUNDAMENTAL PROBLEM

Cur inabilty to manage the COMPLEXITY of our snftware
systems (G. Booch)

Lack of a disciplived, enginsering approach

Student Notos:
SOFTWARE ENGINEERING
®

THE ESTABLISHMENT AND APPLICATION OF SOUND ENGINEERING =

o Environments

; ® Tools f7-
3 ' - o Msthodologies
v . . o Models
.) ~“°. o Principles "~ . .;__ i
SOFTWARE ENGINEERING

COMBINED WITH . .- .
(’ e Standards F-8
) ® (iuidelings

e F:actices

SOFTWARE ENGINEERING

TO SUPPORT COMPUTING WHICH IS = -
. e Understandable
o Efficient
o ® Reliable and safe ’ £-§
o Modifiable
e Correct

THROUGHOUT THE LIFE CYCLE OF A SYSTEM

' (C. McKay, 1985)
N

Fundamentals of Ada Systems 13

Student Notes:
SOFTWARE ENGINEERING %
o Purposss
Fio o Concepts
o Mschanisms
e Notation
e Usage -
SEl, Sep 1986
PURPOSES
1 o Create software systems according v guod engineentig: ,i..' = ’
® Manage elements within the software iite cycle ‘\-" .
CONCEPTS ’ y
|
F-12 ® Derive the architecture of software systems -

o Specily modules of the system

1-4 Funrdamentals of Ada Systems

MECHANISMS

Tools tor:
Wrihing operating systems
— Tuning software
— Prototyping
Techniques for:
— Managing projects
— Systems analysis
— Systems design
Standards for:
— Coding
— Metncs
— Human and machine interfacing

NOTATION

Languages for writing linguistic models
Documentation

USAGE

Embedded systems

Data processing

Contro!

Expert systems

Research and development
Decision suppont
Information mamgemer]t

Student Notes:

F-13

f-14

F-18

Fundamentals of Ada Systems 15

Student Notes:
CONTENT AREAS ‘\

Communication skills

Software development and evoiution processes
Problem analysis and speciftication

System design

Oata Engineering "
Software generatiori

System quality N
Froject managarment

Seltware sngninging projects

16

SEl, June 193¢

PROGRAMMING LANGUAGES AND
SOFTWARE ENGINEERING

A programmiing langusne 12 & software engingenig tool

F17 ® A programming 4&nguage EXPRESSES ano EXECUTES design
methodologies

@ The quakty of a piogramming language for soitware engeenng
is deterrminay by how well it supports a design methodology and
its underlying models. principles. and concepts

TRADITIONAL PROGRAMMING LANGUAGES
SOFTWARE ENGINEERING

Programming Languages * Were nel enginserad T
* Have lached the ability 1o
onpress good sdftware

onginssring
* Nave aaed lo senstrein .-
maftware enpiasering

F-18

o“'o'

o NVIRONM
s ENYS \
TOOLS

QUIDLINES 'amc:::‘

voo.
MODELS -
a4, . METHODOLOGIES /7 ‘ \
‘¢ 1
£y -

1-6 Fundamentais of Ada Systems

e

’ Ada

AND
SOFTWARE ENGINEERING

Ada * Wis itself “engineered" 10 oupport
software ergineering

1 * SEmbadies he Same ORSOpts, Prinsipies,
" and medele 10 suppert methedolegies

. * is the best teel (pregramming lsnguspe)
' for softwere enginsering currently

ENVIRONMENTS - —

STANDARDS TOOLS
CONCEPTS

GUIDLINES prINCIPLES
MODELS

PRACTICES MeTHODOLOGIES

ro0-

PRINCIPLES OF SOFTWARE
(' ENGINEERING
' Abstraction

' Moduiarity

Localization

information huding

Compieteness

Contirmability

Uniformity

(Ross. Goodenough, Irvine, 1975)

ABSTRACTION

e The process of separating out the important parts of something

while ignoring the insssential details
Separates the “what” from the "how"
Reduces the level of complexity
& There are levels of abstraction within a system
@

Student Notes:

F-19

F-20

F-21

Fundamentals of Ads Systems 1-7

Student Notes:

F-22

F-24

1-8 Fundamentals of Ada Systems

MODULARITY

Purposeful structuring of a system into parts which work
together

Each part parforms some smaller task of the overall system

Can concentrate and develop parts independently as long as
interfaces are defined and shared

Can develop hisrarchies of management and implomenutuon :

" LOCALIZATION -

Pumnq things that Iooacally belong tuoemer i the Sai
physical place

INFORMATION HIDING - -

Puts a wall around localized details

Prevents reliance upon details and causes 10cus of attentios 1y
interfaces and 10g:cal properties

COMPLETENESS

Ensuning all :mpaortant parts are present
Nothing left out

CONFIRMABILITY

Deveioping parts that can be effectively tested

UNIFORMITY

" No unnecessary ditferences across a system

.t’.- -

N

Student Notes:
Ada LANGUAGE FEATURES
L

DATA TYPING

* The imposition of structure on data values
manipulated by a programming language

“INTEOER") £-25

1]
2
1]

<‘ o A data type defines a set of values that objects of the type may
‘ assume snd the set of operations that may manipulate them.

TYPE | VALUES OPERATIONS T F26
AGE_TYPE Positive, Exact Numbers| +, ~./, * ...

PERSON_TYPE | Names x Birthdates Examine Name of Person,
x Sex Examine Sex, Assignment ...

DESIRABLE REASONS TO TYPE DATA

o Factorization of Properties, Maintainability
o Reliability
e Abstraction, Information Hiding

F-27

(Rationale for the Design of the Ada Programming Language)

Fundamentais of Ada Systems 1-9

Student Notes:
STRONG TYPING |
]

4

o Ada is a strongly typed language
@ All objacts must be declared to be of & particular type
£-28 o Differant types may not be implicity mixed

o 0perations on a typs mus! praserve that type (remain within set .
of values) o

MY_AGE + PERSON - ILLEGAL

TYPE DECLARATION

F-29 o Creates atype name
e Specifies the set of values and set ol operations fui the type

type TYPE_NAME 1s |"set of vaiues ana operatii, | . _
TYPE DECLARATION
f-30 TYPE VALUES i OPERATIONS .
AGE_TYPE 0.1,2.1%0 Thoge apphicabie to -
tegur values . -
MONEY_IYPE Real vaiues between [Wse applicable o :
0.0 and 100.0 real vaives

MAX_AGE : constant ;. + 130
type AGE_TYPE is range 0 .. MAXIMUM_AGE

‘./"

1-10 Fundamentais of Ada Systems

OBJECT DECLARATION

o Aninstance of a given type
o A name for a storage location whose structure is that defined for
the type

MY_AGE : AGE_TYPE:
YOUR_AGE : AGE_TYPE;
NO_MONEY : constant MONEY_TYPE := 0.0;

— ~ Asimple program that adds three
- - 3ges together

procedure ADD_AGES_TOGETHER is

MAX _AGE . constant := 130,
type AGE_TYPE is range O .. MAX_AGE ;
JOHNS _AGE : AGE_TYPE := 10;
MARYS_AGE : AGE_TYPE := 40;
JANS _AGE . AGE_TYPE := 20
TOTAL : AGE_TYPE := 0;

begin

TOTAL := JOHNS_AGE + MARYS_AGE + JANS_AGE:
end ADD_AGES_TOGETHER:

CLASSES OF Ada TYPES
e Scalar
o Discrete
e Integer Types
e Enumerated Types
e Real
o Fixed Point
¢ Fioating Point

Student Notes:

F-3N

F-32

F-33

Fundamentais of Ada Systems 1-11

Student Notes:

F-34

F-35

F-36

1-12 Fundamentais of Ada Systems

e & & & o ©

Composite
¢ Arrsy
e Record

Access

Private
o Private
o Limited

Task

SYSTEMS ENGINEERING

Analyze prodlem

Break into solvabie parts
implement parts

Tost parts

Integrate parts 10 form total system:
Test total system

REQUIREMENTS FOR EFFECTIVE
SYSTEMS ENGINEERING

Ability to express architecture

Ability to define and enforce interiaces

Ability to create indspendent components

Ability 10 separate architectural issuss from impiementation 1ssues

TASKS Periorms actions in
O parsiie! with other
s program units

Student Kotes:
PROGRAM UNITS

e Components of Ada which together form a working Ada software
sysiem
o Express the architecture of a system

o Define and enforce intertaces

F-37

PROGRAM UNITS

SUBPROGRAMS Working components
that perform some

F-38

PACKAGES A mechaniem fur
j oollectling entities

PROGRAM UNITS

o Conelet of two parts: apecifisation and bedy

the intertess betwesn the . k-39

Fundamentals ot Ada Systems 1-13

F.40

1.14

Student Notes:

Fundamentals of Ada Systems

]

PROQRAM UNITS

® The spacification of the program unit 18 the oilly means o
connacting program units

o Tha intertace i snlorged
® Tiva ody 0f 8 Program unil 18 Not accessidie to other Propram umils

® There 18 a cear dishinction betwsen architectuss and
implementation

~

AUSTRACT ACTIONS |

* Perform some discrety .cllw!y.

3

[rrveey P .‘ PN LNANE (MaANE

SOUNT.
hmaeme 4 MBULY ARD (COUNY .\
L1 TINN

DISCRETE COMPONENTS

© Allow a system (0 be composed of biack boxes

® Provide clear, understandabie functions

© Bilack boxes can be more etectively vahidated and veritied
o Prevalent across engineering discipiines

@~

ADO } (PIRST, SRCOND, TOTAL)
NUMBERS
™o
mf:n ADO DWPLAY
< T AMHIEB& o)
R | GET.NUMBER (.-lnsn ,' JEAT
r.oor . AGEZ RUMAER(S=2 ------:-;; *‘._.,

~ ~"ADD (FiRST, 'Secouo. 'ro' A..}
DlsﬁLAY (I‘QTAL)

: SUBPROGRAMS

e Aprogram unit that performs a particular action
— Procedures '

— Functions)
@ netios

o Contains an intertace (parameter part) mechanism to pass data fo
and trom the subprogram

o The hasic discrete component which acts like a black box
o Gives ability to express abstract actions

SUBPROGRAM STRUCTURE

SPECIFICATION

Student Notes:

#

Fundamentals of Ada Systems

F43

F-44

F-45

1-18

F-46

F-47

F-48

1-16

Student Notes:

Ltocal

Decliarations p»

Executable
Part

Fundamentals of Ada Sysiems

SPECIFICATION

i

FORMAL PART

BODY

procedure ADD_NUMBERS is

MAX_NUM : constant ‘= 40 %
type NUMBER_TYPE is range 0 . MAX_NUM:
NUMBER._1. NUMBER.2, NUMBER_J.

TOTAL : NUMBER_TYPE := 0: -
begin
NUMBER_1 := 1;

NUM3ER_2 := NUMBER_! + 1t:
NUMBER_3 := NUMBER_2 + 1,
TOTAL ‘= NUMBER_1 + NUMBER_2 + NUMBER 3.

end ADD_NUMBERS;

Student Notes:
procedure ADD_NUMBERS is

MAX_NUM : constant = 40 _
type NUMBER_TYPE is range 0 .. MAX_NUM:
NUMBER_1, NUMBER_2, HUMBER_3,
TOTAL : NUMBER_TYPE := 0
proc2dure |NCREMENT

(A_NUMBER : in out NUMBER_TYPE)

. is separate,;
begin

INCREMENT (WUMBER_1):
NUMBER_2 := NUMBER_1;
IWCREMENT (NUMBER_2):
WUMBER_3 := NUMBER_2;
INCREMENT (NUMBER_3).
TOTAL = NUMBER_1 + NUMBER_2 + NUMBER._3J.

end ADD_NUMBERS .

separate (ADD_NUMBERS) . e a— o

procedure INCREMENT
(A_NUMBER : in out NUMBER_TYPE) is

begin
A_NUMBER := A_NUMBER +1;
end INCREMENT;

with TEXT_10;

procedure SAY_KI is
MAX_NAME_LENGTH : constant := 80;
subtype NAME_TYPE is STRING
(1. .MAX_NAME_LENGTH) ;
YOUR_NAME : NAME_TYPE := (others => ' °);
NAME _LENGTH : NATURAL im0

begin

TEXT_10.PUT_LINE("What is your name?"):
TEXT_10.GET_LINE(YOUR_NAME, NAME_LENGTH)
TEXT_10.PUT(*Hi");
TEXT_10.PUT_LINE(YOUR_NAME (1. .NAME_LENGTH)) ;
TEXT_10.PUT_L'NE("Have‘a nice day!!*);

end SAY_H!;

Fundamentais of Ada Systems

Student Notes:

F-52

F-53

F-54

1-18 Fundamentals of Ada Systems

SOFTWARE COMPONENTS ’/_\

® Logically and physically self-contained software resources
@ Similar in benefit to hardware components

o Provide a convenient mechanism for impiementing a reusable
program

PACKAGES .

¢ Program units thet aliow us to coliect logically related entitisa -
in one physical place o9

* Aliow the definition of reusable sofiware components/
resources

* A "undmnul feature of Ada which allow a change of mind-
oe

¢ An grehitecture-oriented feature

N e

_—
g e EE—T:._.T: | l ‘k N
L

PACKAGES

* Place » “‘wall'’ sround resources

* Export resourcas 10 users of s package

* May contasin local resources hidden from the user of # .
packege

J
| —---@—i—%—-- ®

-

‘ STRUCTURE
K

- SPECIFICATION B0DY

= o0 =
= [{Ek

package CONSTANTS is

Pl : constant := 3.14159
e : constant := 2.71828,;

(‘nd CONSTANTS;

N

with CONSTANTS;
procedure SOME_PROGRAM is

MY_VALUE : FLOAT := 2 * CONSTANTS.PI;
begin

nutbtl,
end SOME_PROGRAM;

with CONSTANTS:
.° procedure ANOTHER_PROGRAM i3

ANOTHER_VALUE : FLOAT := 2 * CONSTANTS.PI;
begin

aull;

<.na ANOTHER_PROGRAM:

Studient Notes:

F-85

F-56

F-57

Fundamentals of Ads Systems 1-19

Student Notes:

. Fundamantais ot Ada Systems

package ROBOT CONTROL s
type SPEED 15 range 0 .100. ‘)
type DISTANCE s range 0 500. .
type DEGREES is range 0. 359.
procedure GO. FORWARE

(HOW_FAST : in SPEED;
HOW_FAR :in DISTANCE): &

procedure REVERSE .
(HOW_FAST : in SPEED; .
HOW..FAR : 1n DISTANCE).) T
procedure TURN (HOW_MUCH: in DEGHEES); . ':\
end ROBOT_CONTAOL: . - %

with ROBOT CONTROL; e e . U
procedure DO _A_ SOUARE is s T

bzgn . - .
ROBOT. LONTROL-GO;FORWARD(HUW FAST = . 10C

HOW_FAR - ~'Ju)
ROBOT_CONTROL . TURN(90" :
ROBOT_CONTROL . GO FORWARD (100 .-20.) -
ROBOT _CONTROL . TURN(90);
ROBOT .CONTROL.GO_FORWARD (100. 20) . -
ROBOT_CONTROL.TURN{90): ‘ -
ROBOT .CONTROL .GO_FORWARD (100, 20):
ROBOT_CONTROL . TURN(90)- ‘ -

end DO.A_SQUARE; y 1

package body ROBOT_CONTROL s

procedure CLEAR_PORT is
beg:n

end CLEAR_PORT;
procedure GO FORWARD
{HOW_FAST : n SPEED,

HOW_FAR . in DISTANGE) is
begin

ead GO_FORWARD:
procedure REVERSE (HOW_FAST in SPEED: ;

HOW_FAR : in DISTANCE) 1
beqin‘

uné.ﬁEVERSE:
procedure TURN (HOW_MUCH - in DEGREES) is
begin

edd TURN. |
end ROBOT_CONTROL . .

e

Student Notes:

Q‘ package NUMBERS is

MAX_NUM : constant := 40
type NUMBER_TYPE is range 0..MAX_NUM: F-61
procedure INCREMENT

(A_NUMBER : in out NUMBER_TYPE):

.and NUMBERS;

'
¢
(N

"

i AN -

. with NUMBERS: T < o RIS

" procedure ADD_NUMBERS is

NUMBER_1, NUMBER_2, NUMBER_3,
* TOTAL : NUMBERS .NUMBER.TYPE := 0:
use NUMBERS;

begin

‘ NUMBERS . INCREMENT (NUMBER_1):
(3 NUMBER.2 := NUMBER_1:
NUMBERS.. INCREMENT (NUMBER_2) :
NUMBER.3 := NUMBER_2:
NUMBERS . INCREMENT (NUMBER_3):
TOTAL = NUMBER.1 + NUMBER.2 + NUMBER_3:

end ADD_NUMBERS

F-62

SOFTWARE REUSABILITY

e Studies show that bstween 50% and 75% of ccde within 8 system
is duplicated F

o Treats software systems as a cotlection of potentially reusable
components

@ Must be 2 goal throughout the life cycle

[}

@

Fundamenita's of Ada Systems 1

F84

F-83

F-88

1-22

Student Notes:

Fundamentais of Ada Sysieme

¢ Yompiate ler o ®
oy an ! paskage

S——

g

C'.. '.'.'ZZZ.

GENERICS

L)

prosedure INTRGBRSWAP (LAFY, AIGNY : in eut INTEQER) le
TRMP | INTEORR (0 LEBPFT;

Bogin ?
LEPT 1= RIGMT; :
MOMY 12 TEWP,; ‘

ond INTRGRR_BWAP; :

@
NITR0RN SWAP
INSTANTIATION

o An astual inslanse of & subpregram or pacskage frem o
Sonerie SUBProgram o pesiage

F.._.-.*

7”? :
¢/

with GENERIC_INTEGER_SWAP,

,¢ procedure SWAP_VALUES is

MAX_CCUNT : constant := 200;

type COUNT is range 0. .MAX_COUNT;

procedure iNTEGER_SWAP

is new GENERIC_INTEGER_SWAP (INTEGER);

procedure COUNT_SWAP

is new GENERIC_INTEGER_SWAP (COUNT):

INTEGER.1 : INTEGER := 10
INTEGER_2 : INTEGER := 20

COUNT_1 : COUNT := 100;
COUNT_2 : COUNT := §0;

begin

INTEGER_SWAP (INTEGER_1, INTEGER_2}.

COUNT_SWAP (COUNT_1, COUNT_2);
end SWAP_VALUES:

prroese - -
1 1
" AP
r ----- -‘
L Lt N
| B4 AL
v ! S
i)
LY)
[N [}
] LYy]
benecooen]

type ANY_INTEGER_TYPE la range - -;
procedure GENERIC_INTEQER_SWAP (LEFT,
RIGHT: in out ANY_INTEGER_TYPE);

procedure GENERIC_INTEGER_SWAP (LEFT, RIGHT: in out

ANY.INTEGER_TYPE) is

TEMP: ANY_INTEGER_TYPE := LEFT;
begin

LEFT := RIGHT;

RIGHT : = TEMP;
ond GENERIC_INTEGER SWAP;

generic
type ELEMENT_TYPE is private:
procedure GENERIC_SWAP

(LEFT, RIGHT : in out ELEMENT_TYPE):

procedure GENER|C_SWAP

(LEFT, RIGHT : in out ELEMENT_TYPE)

TEMP : ELEMENT_TYPE := LEFT:
begin

LEFT :-= RIGHT;

RIGHT := TEMP;
end GENERIC_.SWAP:

Student Notes:

k67

F-68

F-69

Fundamentals of Ada Systems 1-23

F-70

1-24

Student Notes:

Fundamentais of Ada Systems

e

with GENERIC_SWAP:
procedure SWAP_THINGS is

MAX_COUNT : constant := 100;

type COUNT .
is range - MAX_COUNT .. MAX_COUNT: |

type COLORS is (RED, BLUE. GREEN):
type REAL is digits 10; =

procedure SWAP_COUNT "
is new GENERIC_SWAP (COUNT): .
procedure SWAP_COLORS
is new GENERIC_SWAP (COLORS);
procedure SWAP_REAL
is new GENERIC_SWAP (REAL);

COUNT_1 : COUNT := §:
COUNT_2 : COUNT := 10:

COLOR_1 : COLORS := RED:
COLOR_2 : COLORS := BLUE;

REAL_1 : REAL := 20.0;

REAL_2 : REAL := 40.0: ‘

begin N
SWAP_COUNT (COUNT_1, COUNT_.2): -
SWAP_COLORS (COLOR_1, COLOR_2):
SWAP_REAL (REAL_1, REAL_2):

end SWAP_THINGS:

T
ey

Ada PROGRAM LIBRARY

® A record of ali the separately compiled program units that make up
aprogram

o Central facility for the development of Ada systems

SEPARATE COMPILATION

-Pmmlumybomndym

upanltbn of -pocllmn ond body of the

* A
AL LI By i e

V8l g

_———'——’

SEPARATE COMPILATION

-Amw'ommyuwuwm

. srehitecture and
awlmanoionl’y;nbo.i::l. ::tmn

Student Notes:

i
-3
=

F-72

F-73

Fundamentals of Ada Systems 1-28

F-74

F-75

F-76

1-28

Student Notes:

Fundamentals of Ada Systeme

SEPARATE COMPILATION

® Aliows development of :ndspendent soltware components

o Currently we all but lase the human etfort going into software it 1s
disposabls

© Separate compilation aliows us 10 reuse componenis and keep out
investment ' . :

SOFTWARE COMPONENTS

-

COMPOWENTS LISBARARY
p— - . ~

il

.,:")
PROJRCYS
LoJhee s

INDEPENDENT COMPILATION

© Widely used

e Modulas have no way uf sharing knowiedge of properties dafined in
other mndules

© Uses lower level 0f compiie-time cChackin) of congistency detwesn
units than is possidle within a single compitation unit

Q..u/

.
e et

Student Notes:

| ‘ SEPARATE COMPILATION

£.77

o Use: the program lbrary to perform the same level of checking
between units whether compited in one compilation unit or many

o Resolves safety with reasons for compiling in parts

" 7. Ada COMPILATION MODEL" __:

X
"

-

Yo FTCTTTTT TT s paries St T

F-78

COMPILATION UNIT

o A compleis Ada program is a colleciion of compliation
unita submiitted 10 thy complier scparately

[WJW -

Y

Fundameniels of Ada Systems 1-27

Student Notes:

F-81

F-82

=28 Fundamentals of Ada Systems

COMPRLA TION YeiT CCMPRLATION VT CONPILATION VT

C JC 1C]
|

W
Ada PRCGRAM

- CONTEXT CLAUSE

. Mm.:wbwymhmumumddhw‘

compliation unit
with LIERARY_ UNIT_NAME;
o 4; - o
\BRaAY UBRARY CIRRARY UBRARY
vt wnr e wer e
< L]
A [] [] -
LIBRARY UNITS

o Subprogram deciaration (specification)

o Package declaration (specification)

© Generic deciaration (specification)

e Generic instantiation

o Subprogram body (specification and body)

n
B

o
o

procedure PRINT_MY_NAME;

[Program Library |

(Feroraaes)

TEST OPERATIONS s
type TEST_SCORES la range 0..100;
mdnu SWAP (FIRST, SECOND: in out TEST_SCORES);

SECONDIS GREATER (MRST, SECOND: in TESTSCORES)

nm BOOLEAN;
ond TEST_OPERATIONS;

LL-vJ

with PRINT_MY_NAME, TEST OPERATIONS;

proocedure TEST USER e
MY_TEST : TEST.OPERATIONS. TEST SCORES := 10;
YOUR_JEST : TEST_OPERATIONS. TESTSCORES :» §;

bogin

PRINTMY_NAME;
TEST_OPERATIONS. SWAP (MY_YEST, YOUR_TEST);
ond VEST_USER;

Lml-l'm|

=) a=w ""“""

= |/

)

Student Notes:

F-83

F-84

Fundamentals of Ada Systems 1-29

F-86

F-87

F-88

1-30

Student Nctes:

Fundamentais of Ada Systems

SECONDARY UNITS

o Library unit body
~ Sudprogram body

~ Package body
o Subunit

procedure PRINT_KY_NAME i
begin - PRINT_MY_ NAME

ond PRINT.MY_NAME;

TESY.OPSAATIONS

laaagL X]

(2

TEST. VA

/

1 __ovegram Uhrery |
(mEwea) V|-

package body TEST_OPERATIONS is

pracedure SWAP
(FIRST,SECOND : in out TEST_SCORES) is
TEMP : TEST_SGORES;
begin -- SWAP
TEMP 1= FIRST;
FIRST := SECOND.
SECOND := TEMP;
ond SWAP;

function SECOND._IS_BREATER
(FIRST, SECOND : in TEST_SCORES)
return BOOLEAN is
begin -- SECOND_IS_GREATER
return SECOND>FIRST;
end SECOND_IS_GREATER;

end TEST_OPERATIONS,

I

A

L~

0 —e Ve

PROGRAM LIBRARY

LiBRAAY UNITS SECONOARY UNITS
==
TEST.OPERATIONS A w J
=D . 'i“l'.".lﬁ“
o)
&
| m——

| Y

SUBUNITS

procedure COUNTING is
type SMALL_NUMBERS e renge 1..10;

VALUE: SMALL_MUMBERS;
procedure l‘lCﬂE&EﬁT (NUMBER: in out BMALL NUMBERS)

in -~ COUNTING
ALUE:= 1

INCREMENT (VALUE);
end COUNTING;
TING, [Program Libary |
COUNTING
PN

SUBUNITS

- Visibility rules for the subunit are the same as if
the code was embedded as before

mmmmeMb

INCREMENT
:-m*'ﬂ
[_Program Uibrery]

end |

COUNTING

Student Notes;

Fundamentais of Ada Systems

F-89

F90

E-9

1-31

F-82

f-93

b-94

132

Student Notes:

Fundamentals of Ada Systems

CONTROL STRUCTURES

o Control fiow of axecutable sequence of statements
o Define internal logic of a program unit

- '

ASSIGNMENT STATEMENT .

procedure CALCULATE_TOTALS .14

MAX_VALUE : constant := 1000,
type VALUES is range 0. MAX_VALUE: .

VALUE_1, VALUE.2. VALUE.3 : VALUES + 10

VALUE_4, VALUE.S3, VALUE.S ' VALUES .= 0,
pegin ')

VALUE.4 : . 20.

VALUE.S '= VALUE.4 + 10.

VALUE_8 '« (VALUE_S + 2) ° VALUE.Y;

VALUE.8 :~ VALUE.S + VALUE.Y + VALUE_ 2,

end CALCULATE_TOTALS,

package NUMBERS s

MAX_NUM : constant - 40
type NUMBER_TYPE 13 range 0. . MAX_NUM;
procedure INCREMENT

(A_NUMBER - in out NUMBER_TYPE):

end NUMBERS .

IIMJ

——

PROCEDURE CALL

with NUMBERS:

procedure TOTAL_

VALUES is

MY_VALUE .: NUMBERS .NUMBER_TYPE := 0;
YOUR_VALUE : NUMBERS .NUMBER_TYPE := 4.

vse NUMBERS;
begin -

MY_VALUE := MY_VALUE + 1;

NUMBERS . mcnsuﬁur (v VAtuE)

- YOUR_VALUE =

n’uuazus. lﬂtﬁ“um'rqnm. S
enid Tont-vnt.m.' ST

oackige boedy NUMBERS s

[=
LS
.10 e) “'S- . -
AR vl JEN
-?
-
L, W
-, T
.-

Y

-

procedure INCREMENT

(A_NUMBER : in out WUMBER_TYPE) is
begin
A_NUMBER := A_NUMBER + 1: .
end INCREMENT,
20d MUMBERS;
{F STATEMENT
N CONDITION then
STATRMENT;
20003 STATEMENT;
STATEMENT;
L]
SYATEMENTS
.

Student Notes:

H

Fundamentals ¢t Ads Systams

F-95

-

Student Notes:

F-98

F-99

F 100

1234 Fundamentais 0! Ada Systems

with NUMBERS.

procedure COUNT_UP it .'\

MY_NUMBER ' NUMBERS NUMBER. TYPE 10
YOUR_NUMBER ' NUMBERS .NUMBER_TYPE . 0
use NUMBERS,
begin
NUMBERS INCREMENT (MY_NUMBER),
HMY_NUMBER ~ 11 then
YOUR_NUMBER : = §,
ond i,
NUMBERS .INCREMENT (YOUR_MUMBER).
It YOUR_NUMBER = 5 then
NUMBERS.INCREMENT (YOUR_NUMBER):
NUMBERS .INCREMENT (MY_NUMBER).

and i,
ond COUNT_UP:
IF STATEMENT
i THE_SKY_IS . BLUE then o THF _SKY_IS_BLUE then
THERE _ARE_NO .CLOUDS. THCRE _ARE_NO_CLOUDS
sise pisit THE _SKY_IS_RED then
THERE ARE_CLOUDS, iT_IS_MORNINU.
THE_SKY_IS_NOT_BLUE, IT_IS_EVENING;
end it eisif THE_SKY_IS_GREEN then
WE_HAVE_PROBLEMS,
slse
WHO_CARES;
end i,
LOOP STATEMENT
with NUMBERS;

procedura COUNT_UP is
MY_NUMBER : NUMBERS.MUMBER TYPE .~ 0
u3¢ NUMFZRS,; .
begin
oop
NUMBERS .INCREMENT (MY_NUMBER).
exit when MY_ NUMBER - NUMBERS MAX_NUM,

end (oop;

end COUNT_UP: .

INPUT/QUTPUT
TEXT_IO

o A predefined package that provides input and output facliities for
textual (human readable) objects

o Contains VO facilities for strings and characlers and generic
facilities for integers, enumerated, fixed and fioating point types

TEXT.I0

peckage TEXT.IO - All file lsycut sperstions
+ All tile management

&Em
&

10 packages
PUTe and GETs for

 fieating point, fixed peint
SRUMSrstion typee .

i!

i

GENERIC TEXT.J0O

INTEGERJO ruwuo
[PEMEN gD

o=

Student Notes:

F-101

F-102

F-103

Fundamentals of Ada Syatems 1-35

Student Notes:

F-104

F-105

F-106

! 136 Fundamentais of Ada Systoms

STRING VO

with TEXT_10; ‘A)

procsdure OUTPUT_TEXT is

MAX_LENGTH : constant = 20,
subtype LINE_TYPE is STRING (1. MAX_LENGTH):

MY_LINE © LINE_TYPE = (others => '#');:
begin)
TEXT_10.PUT(HI THERE,"). .

TEXT_1D.PUT(").

TEXT_10.PUT("WELCOME TO Ada"); T
TEXT_10.NEW_LINE, .
TEXT_10.PUT(MY_LINE) .

TEXT_1O.NEW_LINE;

ond OUTPUT_TEXT,;

M| THERE, WELCOME TO Ada
i ad ol Ll g

STRING /O
with TEXT_I0;
procedure OUTPUT_TEXT Is ‘)
MAX_LENGTH : constant := 20 N

lubtyptLlNE-TYPE|35TRING(I..MAX-LENGTH),
MY_L INE © LINE_TYPE := (others => '#');

begin
TEXT_10.PUT_LINE ("HI THERE.").
TEXT_I10.PUT_LINE ("WELCOME TO Ada").
TEXT_10.PUT_LINE (MY_LINE).

end OUTPUT_TEXT,

HI THERE

WELCOME TG Ada
SHPEP PP PIPP PP PSPPI RPN

STRING VO

package LINE_PACKAGE Is

MAX_LENGTH : constant := 20
subtype LINE_TYPE is STRING (1. .MAX_LENGTH) .

end LINE_PACKAGE;

@

b

& STRING 1O

with TEXT_10, LINE_PACKAGE:
procedure ECHO_NAME is

NAME : LINE_PACKAGE.LINE_TYPE := (others=>" ') ;

begin
TEXT_10.PUT ("WHAT IS YOUR NAME?*):
TEXT_10.GET (NAME);
TEXT_10.PUT (*“H1");
TEXT_I10.PUT_LINE (NAME);

end ECHO_NAME;

CHARACTER_IO
@
with TEXT_10, LINE_PACKAGE;
procedure ECHO_NAMES |s

NAME : LINE_PACKAGE. L INE_ TYPE = (others => '

ANSWER : CHARACTER := "N’
begin

TEXT_10.PUT (*WHAT IS YOUR NAME?");
TEXT_10.GET (NAME);

TEXT_10.PUT ("HI");
TEXT_10.PUT_LINE (NAME):

TEXT_10.PUT ("MORE NAMES? (Y TO CONTINUE) : *):

TEXT.10.GET (ANSWER);
TEXT_10.SKIP_LINE;

exit when ANSWER /="'Y' or ANSWER/= 'y

end ECHO_NAMES;

@

Student Notes:

F-107

. ——— e cA—— ——

fF-108

Fundamentais of Ada Systems 137

£-109

1.38

Student Notes:

GENERIC VO

with TEXT_I0, LINE_PACKAGE, NUMBERS,

procedure ECHO_AGE as

package NUMBER_I10 is new TEXT_I0. INTEGER !0

(NUMBERS . NUMBER_TYPE) . -
NAME : LINE. PACKAGE LINE TYPE -

(others => ' '),
AGE : NUMBERS .NUMBER_TYPE . = (O~
begin T AN

TEXT_10.PUT (*WHAT IS YOUR RAME: ")
TEXT_10.GEY (NAME) ‘
TEXT_10.PUT ("HOW OLD ARE YOU" "
NUMBER_10 .GET (AGE). - - - .

TEXT_10.PUT (NAME): - - .
TEXT_10.PUT (*, YOU ARE "),
NUMBER_10.PUT (AGE):
TEXT_10.PUT_LINE (* YEARS OLD");

end FCHO_AGE;

Fundamentais of Ada Systems

.
<\. B

BASIC ADA TYPES

e Purpose of Typing -

_ o Type Declarations
) o Object Deciarations
o Claszes uf Basic Ads Types -
PRI S S S AREE
TYPING

-

(‘ o Atype defines a set of values and a set of operations applicable 10
those values for objects of that type

PURPOSE OF TYPING

o To impose structure on data for:
. eeFactorization of Properties, Maintainabliity
oo Reliability
ee Abstraction, Hiding of impiementation Detalls

Student Notes:

"

Basic Ada Types

B-1

8-3

2.1 .

Student Notes:

STRONG TYPING

B4 o Even object must have a specified type that is static
o Cannot mix objects of ditferent types without explicit conversion

TYPE DECLARATIONS

B-5 o Construct used (o define a new type
o Creates a new type nama which is tatu:ot from othe: typs names

e Form
type TYPE_NAME is {CLASS OF TYPE).

TYPE DECLARATIONS

type COUNT is range 0 .. 500; — - integer type
type SCALE is (LOW, MEDIUM, HIGH); -~ snumersted type .
type WEIGHT is digits 10 rangs 0.0 .. 1000.0; ~ - floating pcint typs
56 ‘ type CURRENT s caita 0.0825 range 0.0 .. 100.0; - ~ fixed point type

type CHARACTER_COUNT ik array (CHARACTER) of COUNT; — - amytypo
type CLASSIFY is racord = ~ record type

VALUE : WEIGHT:

CATEGQRY: SCALE;
end record;

2-2 Basic Ada Types

. -

(,,;' OBJECT DECLARATIONS

¢

e Aninstance of a type
o Reserves storage with the structure definad by tha type

o Form
OBJECT_NAME: TYPE_NAME:= INITIAL_VALUE;
OBJECT DECLARATIONS
TOTAL_COUNT : COUNT -0
RATING : SCALE = LOW:

(' SMALLEST WEIGHT : WEIGHT - 0.0;

\’ LINE_CURRENT : CURRENT = 0.0;
HOW_MANY . CHARACTER_COUNT := (others = > 0);
VALUE_CLASSIFICATION : CLASSIFY = (0.0, Low);

FORMS
VARIASLE
TOTAL_COUNT : COUNT - 0
CONSTANT
SMALLEST WEIGHT : consantWEIGHT := 0.0;
NAMED NUMBER . ‘
&. MAXIMUM_COUNT : . constant S = 100

Student Notes:

8.7

-8

8-9

Basic Ada Types 2-3

Student Notes:

with TEXT_1D:
procedure TOTAL_NUMBERS is .’3
NUMBER_TO_GET : constant : = §5;
MAXIMUM_NUMBERS : constant ' = 10,
type NUMBERS is range 0 .. MAXIMUM _NUMBERS * NUMBER_TO_GET,
subtype INPUT_NUMBERS is NUMBERS range 0 MAXIMUM_NUMBERS.

A-NUMBER : INPUT_NUMBERS := 0;

B-10 TOTAL :NUMBERS =0
package NUMBER _IO is new TEXT_I0.INTEGER_10{ NUMBERS);
begin

for TOTAL_LOOP 1n 1.. NUMBER_TO_GET loop
TEXT_10.PUT("Number -)).
NUMBER 10.GET(A_NUMBER);
TOTAL ;= TOTAL + 1 _NUNBER;
end loop,;
TEXT_10.PUT(*Total of numbers 1$ °).
NUMBER_10.PUT(TOTAL).

end TOTAL_NUMBERS;

ADA TYPES ')
SCALAR -— singie values h
®® DISCRETE — exact values
eee INTEGER
e3¢ ENUMERATED
oo REAL — approximate vaiues
B-11 coe FIXED Point — absolute
oes FLOATING Point — relative
COMPOSITE — muttiple values
®0 ARRAY — MmmMus (components have samae type)

oo RECORD — heterogeneous (components may have
difterent typas)

ACCESS — dynamic variables
PRIVATE/LIMITED — abstract data types
TASK — designate tagks

SCALAR TYPES

B-12 , o Objects contain a single value ‘
o Values are orderad
244 Basic Ada Types

DISCRETE INTEGER ' ,

N o FORM
type IDENTIFIER is range LOWER_BOUND .. UPPER_BOUND;
o EXAMPLE

MIN_AGE : constant := 0;
MAX_AGE : constant := 150,

. type AGE_TYPE is range MIN_AGE .. MAX_AGE:

SET OF VALUES:
0.1,2,...150)

B8-13

with TEXT_IO;
procedure AVERAGE _NUMBERS is

NUMBER_TO_GET : constant ;= §;
MAXIMUM_NUMBERS : constant := 10;
type NUMBERS is range 0 .. MAXIMUM_NUMBERS * NUMBER_TO_GET:
(subtype INPUT_NUMBERS is NUMBERS range 0 .. MAXIMUM_NUMBERS,

type NUMBER_COUNT is range 0 .. NUMBER_TO_GET.

Lt

. | B-14
A_NUMBER :INPUT_NUMBERS := 0;
TOTAL : NUMBERS = ;
HOW_MANY_NUMBERS :NUMBER_CCUNT :=0;

package NUMBER_I0 is new TEXT_I0.INTEGER_IO(NUMBERS),
package COUNT_I0 is new TEXT_ID.INTEGER_iD(NUMBER_COUNT);

begin

i TEXT 0. PUT(*How many numbers do you have ->°);
COUNT_10.GET (HOW_MANY_NUMBERS);
Ior‘l’DTAL LOOPin 1. HOW MANY _NUMBERS loop

TEXT_10.PUT("Number -> %);
NUMBER_I0.GET(A_NUMBER);
TOTAL := TOTAL + A _NUMBER;
end loop;
TEXT_ IO PUT(*Total of dumbers is);
NUMBER 10.PUT(TOTAL);
TEXT_I10. NEW _LINE(2);
TEXT10.PUT(*The average of the numbers is”);
NUMEER 10.PUT(TOTAL / NUMBERS(HOW_MANY NUMBERS))

\. end AVERAGE_NUMBERS;

BasicAdaTypes 2:5

B-15

B-16

2-6

Student Notes:

DISCRETE ENUMERATED

o Enabie direct representation of non-integer values
o Example, security classcs

UNCLASSIFIED, CONFIDENTIAL, SECRET, TOP_SECRET

type SECURITY_TYPE is (UNCLASSIFIED, CONFIDENTIAL. .
SECRET, TOP §ECRET)

procedure CONTROL ACCESS s .-
type SECURITY_TYPE |s(UNCLASSIFIED BONFIDENTIAL SECRET.
TOP_SECRET). .
procedure GET CLASS(.SECURITY LEVEt out SECURITY_TYPE) is
separate;
procedure ENABLE CONFIDENTIAL _ACCESS is separate_
procedure ENABLE_SECRET_ACCESS is separate ..
procedure ENABLE ™ _T0P_ SECRET ACCESS is sepmle
SECURITY_CLASS : SECURITY_TYPE : = SECURITY_TYPE'FIRST:
begin
GET_CLASS(SECURITY_CLASS);
if SECURITY_CLASS - TOP_SECRET then
ENABLE_TOP_SECRET_ACCESS:
ENABLE_SECRET_ACCESS;
ENABLE_CONFIDENTIAL _ACCESS;
eisit SECURITY_CLASS « SECRET then

ENABLE_SECRET_ACCESS;
ENABLE_CONFIDENTIAL _ACCESS;

eisit SECURITY_CLASS = CONFIDENTIAL then
ENABLE_CONFIDENTIAL_ACCESS:
ond i,
end CONTROL_ACCESS;

Basic Ada Types

O

,/‘A
k\

REAL

e Provide approximutions for real numbers
o Two ways of handiing error bounds
" e _ Floating Foirt — relative error bound
J .. Fixed Point — sbsolute orror bound -~
- e Model Numm pive mmonﬂﬂon-tndopmdm aemrm
,*. .. Sate Numbs's gu‘ve wnplemmtuﬂon-ﬂmndmracnuﬂq

T, - -

.r't-.
- '. - —,-.'A - -

FLOATING POINT TYPES

e Error bound betwesn numbers is expressad as reiative t0 the
position of the number over the entire range of values

e Accuracy is specified in terms of the number of significant digits
required

FLOATING POINT TYPES

e Form
type TYPE_NAME is digiis 10 [range 0.0 .. 100.0}:
{ype REAL is digits 15 range -100.0 .. 100.0; o

/
B
\A‘

"

Student Notes:

B-17

B-18

8-19

Bazic Ada Types 2-7

8-20

B-21

2-8

Student Notes:

Basic Ada Types

with TEXT_I0; h

procedure AVERAGE_NUMBERS is
NUMBER_T0_GET : constant "= 5,
MAXIMUM_NUMBERS constant := 10.0.
type NUMBERS is digits 10 range 0.0 ..
MAXIMUM NUMBERS * NUMBER_TO_GET:

subtype INPUT_NUMBERS is NUMBERS range 0.0 ..
MAXIMUM_NUMBERS;

type NUMBER_COUNT is cange 0 .. NUMBER_TC_GET:

A_NUMBER © INPUT _NUMBERS := 0.0:
TOTAL . NUMBERS = 00
HOW_MANY NUMBERS : NUMBER COUNT = 0.

package NUMBER_10 15 new TEXY_10.FLOAT_I0(NUMBERS);
packsge COUNT_10 1 new TEXT_ID.INTEGER IO NUMBER_COUNT »,

begin

TEXT_10.PUT("How many numbers do you have -~ =),
COUNT_IO.GET (HOW_MANY_NUMBERS);
for TOTAL_LOOP in 1 .. HOW_MANY_NUMBERS loop . R
TEXT_10.PUT("Number -> 7),
NUMBER_I0.GET(A_NUMBER);
TOTAL : = TOTAL + A_NUMBER;
ond loop:
TEXT_10.PUT("Total of numbers 15 *);
NUMBER_I0 PUT(TOTAL).
TEXT_I0.NEW_LINE(2).
TEXT_10.PUT("The average o! the numbers 15°).
NUMBER_IO.PUT(TOTAL / NUMBERS(HOW_PMANY_NUMBERS)).

end AVERAGE_NUMBERS:

FIXED POINT TYPES

o Error bound between numbers is expresged as s fixed value
_ between any two numbers

® Accuracy is specified in terms of the deita (change) requirec

®
\.

FIXED POINY TYPES Student Notes:

o Form
type TYPE_NAME is delta 1.0/8 range 0.C .. 1000.0; B-22
type FIXED_TYPE is deita 1.0/16 range 0.0 .. 1000.0;

with TEXT 10;

procedure AVERAGE_NUMBENRS is
NUMBER_TO_GET : constant ;= 5;
MAXIMUM_NUMBERS : constant := 10.0;

EIGHTS : constant := 1.0/8; B-23

type NUN:BERS is dehta EIGHTHS range 0.0 ..
M/AXIMUM NUMBERS * NUMBER_TO_GET:

subtype INPUT_NUMBERS is NUMBERS range 0.0 ..
IAAXIMUM_NUMBERS;

typc NUMBER_CCUNT is range 0 .. NUMBER_TO_GET;

A NUMBER © IWPUT_NUMBERS :» 0.0:
THTAL : NUMBERS = 0.0;
HOW_MANY_KUMBERS : NUMBER_COUNT = 0

package NUMBER 10 is

new TEXT_10.FIXEC_10(NUMBERS),
package COU*‘T 10 is

new TEXT_I0.iNTEGER 10(NUMBER _COUNT);

begin

TEXT_10_PUT{"How iiany numbers 9o you have -> °);

COUNT 10.GET (HOW_MANY NUMBERS);

tor TOTAL_LOOFint . now MANY _NUMBERS op
TEXT_tO| PUT('NUIM: >,
KUMBER 10.GET(A _NUMBER).
TOTAL ;- TOTAL + A _MUMBER;

onG loog:;

TEXT_1G.PUT("Total of numbsers is),

NUMBER_I0.PUT(TOTAL); :

TEXT_I0.NEW_LINE(2);

TEXT 0. PUT{*Ths zvarage of the rumbers is”);

NUMBER 10.PUT ' ,
(NUMBERS(TOTAL / NUMBERS(HOW_MAMY_NUMBERS)):

end SVERAGE_NUMBERS,
Basic Ads Types 2-9

Student Notr:

e-24

8-25

8-26

2419 Basic Ads Types

COMPOSITE TYPES

© Objects may contain muitipie values
o Two kinds
o0 Arrays — values have same type
o8 Racords - vaiues may have ditierent types

ARRAYS

o |In declaration must specity
oo The type of the .omponents
oo The type of the index

o Form

NUMBER_OF TILES : consient :- 7,

type TILE_NUMBER s ranpe 1 .. NUMBER_OF _TILES:

type LETTER is (A.8.C.0.E.F.G.H.1J.K.LLM.N.O,
P,0.R.S.T.U.V.W.W.X.Y.2 BLANK):
type RACK is array (TILE_¥*‘MBER) of LETTER;

MY_RACK : RACK := (A,J,B BLANK.K.S.S),

5

U~

1 2 3 4 6
(A [T J] 6 [Bank] K | §

ARRAY INDEXING

o To refersnce 3 particulsr component of an arrsy must specify index

MY_RACK (3) :s BLANK;
MY_RACK(E..7) := (A.B);
© MY_RACK (4) 1= MY_RACK {6).

[X'Y)

. . j‘ -

U

e

¢

1
'

@

package SAMPLER is

BANDWIDTH : constant : = 100;
type FREQUENCIES is range -BANDWIDTH .. BANDWIDTH;

MAX_MAGNITUDE : constant : = 10;
type MAGNITUDE is range 0 .. MAX_MAGNITUDE;

type SPECTRUM is array(FREQUENCIES) of MAGNITUDE:

function MIGH_FREQUENCY
(A_SPECTRUM : SPECTRUM) return FREQUENCIES;

ond SAMPLER;

packzge body SAMPLER is

function HIGH_FREQUENCY (A_SPECTRUM : SPECTRUM) return FREQUENCIES is

HIGH_MAGNITUDE : MAGNITUDE := MAGNITUDE'FIRST:;
HIGHEST_FREQUENCY : FREQUENCIES := A_SPECTRUM'FIRST;

begin
for FREQUENCY in A_SPECTRUM'RANGE loop
i HIGH_MAGNITUDE < A_SPECTRUM(FREQUENCY) then
HIGH_MAGNITUDE := A_SPECTRUM(FREQUENCY):
HIGHEST_FREQUENCY := FREQUENCY;

end if;
end loop;

return HIGHEST_FREQUENCY;
end HIGH_FREQUEHCY;
end SAMPLFR;

UNCONSTRAINED ARRAY3

o Give the ability to deciare varying sized objects irom the same armay
type declaration.

VWSTRING is array (POSITIVE range <>) ol CHARACTER;

MAX_TEXT_LINE : constant ;= 80;

subtype TEXT is STRING (1 .. MAX_TEXT_LINE);
SALL_TEXT_SIZE : constant := 10;

subtype SHORT_TEXT is STRING (1 .. SMALL_TEXT_SiZE);
SHORT_LINE : SHORT TEXT;

LONG_LINE : TEXT; ‘
LINE : STRING (1 .. 12),

B-27

B-28

8-29

Basic Ada Types 21

Student Notes:

B8-30

8-31

8-32

2-12 Basic Ada Types

package SAMPLER 15

BANDWIDTH . constant : = 100,
SMALL : constant .= 10 .’\\
MEDIUM : constant : + 50; o
type FREQUENCIES is range -BANDWIDTH . BANDWIDTH:

MAX MAGRITUDE ' constant . 10,
type MAGNITUDE is range 0 .. MAX_MAGNITUDE:

type SPECTRUM is array(FREQUENCIES range < >) of MAGNITUDE;

subtype SMALL_SPECTRUM is SPECTRUM(-SMALL..SMALL), -
subtype MEDIUM_SPECTRUM is SPECTRUM(-MEDIUM. . MEDIUM); .
subtype FULL_SPECTRUM s SPECTRUM(-BANDWIDTH. BANDWIDIH)

function HIGH FREQUENCY ce I -
(A_SPECTRUM : SPECTRUM) return FREQUENDIES S L

snd SAMPLER; ST

with SAMPLER: L.
procedure FIND_HIGHEST 18

SHORT_RANGE : SAMPLER.SMALL_SPECTRUM := (others =) 5);
FULL_RANGE : SAMPLER.FULL SPECTRUM ° := (others =) 1),
MIGHEST : SAMPLER.FREQUENCIES : = SAMPLER.FREOUENCIES'FIRST:
SHORT_HIGH: SAMPLER.FREQUENCIES : = SAMPLER.FREQUENCIES FIRST,
FULL_HIGH :SAMPLER.FREQUENCIES .= SAMPLER.FREQLENCIES'HIRST,

begin
SHORT HIGH = SAMPLER HIGH_FREQUENCY(SHORT RANGE). ‘ -
FULL HIGH - SAMPLER.HIGH_FREQUENCY(FULL_RANGE), w)

it HIGHEST - SHORT_HIGH then
HIGHEST © SHORT HIGH,
eng it)

i1 HIGHESY - FULL_HIGH then
HIGHEST . FULL HIGH
end if:
end FIND_HIGHEST,

MULTI DIMENSIONAL ARRAYS

package GAME_PIECES 1s r

NUMBER_OF _TILES : constant := 7,
type TILE_NUMBER is range 1 .. NUMBER_OF _TILES: ..

NUMBER_OF_SQUARES . constant : = 15,
typs SQUARES is range 1 .. NUMBER_OF_SQUARES,

type TILESis (A,B.C, 0, €, F, G H,|.J.K,L,MNOPQRST
U, V.W, XY Z BLANK, EMPTY)

type RACK is array (TILE NUMBER) of TILES,
type BOARD is array (SOUARES, SQUARES) of TILES. . ‘
end GAME_PIECES; __J

Student Notes:

(’. pickage FORMAT is

procedure ADD_DOLLAR SIGN(A STRING : in out STRING); B-33
und FORMAT;
Dackaoobody'dquf 5 T e IR

1"

-, '. . R e I .Q‘

' proeeuuumo DQLLAR "‘IGN(A emme mo.ﬂ-STRWG‘[ts .
DOLLAR - camcrea -'s'; - -
begin)
B-34
A_STRING(A_ STRING'FIRST+1 .. A _STRING' LAST)= _
A_STRING(A_STRING'FIRST .. A_STRING'LAST-1);
A_STRING(A_STRING'FIRST) := DOLLAR:
K. end ADD_DOLLAR_SIGN;

end FORMAT;

with FORMAT, TEXT_I0;
procedure FORMAT_NUMBER is
MAX_LENGTH : constant := 80;
" subtype NUMBER_STRING is STRING(1..MAX_LENGTH);
A_NUMBER_STRIKG : NUMBER_STRING := (others => *');
LENGTH : NATURAL := 0; | 6-33
begin
TEXT_10.GET_LINE(A_NUMBER smma LENGTH):

FORMAT.ADD_DOLLAR_SIGN (A_NUMBER_STRING(1..LENGTH+1));
TEXT_I0.PUT{A_NUMBER_STRING);

<

(. end FORMAT_NUMBER;

BasicAdaTypes 213

Student Notes:

B8-37

B-38

2-14 Bsalc Ada Types

RECGRDS

e Components may have different types
o Form

NUMBER_OF_DAYS_IN_MONTH : constant := 31,

type DAY-TYPE 1s range 1 .. NUMBER_OF_DAYS_IN_MONTH;

tvoe MONTH TYPE is (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC);

LAST_DAY_ON_EARTH : constant - = 2085

type YEAR_TYPE is range 1 .. LAST_DAY_ON_EARTH;

type DATE is record
DAY :DAY_TYPE,
MONTH : MONTH_TYPE;
YEAR : YEAR TYPE;
end record.;

Components are referenced using “dot notation”

TODAY
3 TODAY.DAY
JUN TODAY.MONTH
1987 TODAY.YEAR
TODAY : DATE:
TOMORROW:DATE:

-YESTERDAY : DATE;

begin

TODAY.DAY := 3;

TODAY.MONTH : = JUN;
TODAY.YEAR : = 1987,
YESTERDAY.DAY ;= TODAY.DAY -1,

YESTERDAY.MONTH .= TODAY.MONTH.
YESTERUAY.YEAR : = TODAY.YEAR;

TOMORROW : = TOCAY,
TOMORROW.DAY := TOMURROW.DAY 4+ 1:
TODAY := (4, JUN, 1987).

AT
./

@

OTHER RECORD FORMS

o Discriminated
o Variant

OTHER ADA TYPES

o Access Types .
eeEquivalent to dynamic variables in other language
eeUsed o dynamically aliocate/desliocate storage at run time
o Task Types ~ Designate tasks
o Private Types — Abstract data types

Student Notes:

Basic Ada Types

-39

8-40

218

CONTROL STRUCTURES

e Structured Programming
o Sequentiai

e Conditiona

o [terative

STRUCTURED PROGRAMMING

o A methodological styls for constructing programs by connecting
‘ weli understood constructs calied control structures
‘.

o Thres ditterent comirol structures are sufficient for wiiting any logic
(Bohn/dacopini '64)

‘ oo Sequencs ¢ avecutabis stataments
oo Decision clause (i then siss)
eslteration construct (While or until)

,‘ DAWHILE AEPRAT.UKT,
Y

Student Notes:

C-1

C-2

£-3

Controt Structures 3-1

Student Notes:

C-5

3-2 Control Structures

BENEF!ITS
o Understandability
e Modifiability
¢ Reliability
' SEQUENTIAL STATEMENTS - -
o /usignment - R
o Null null;
‘e Block Statement
BLOCK STATEMENT

o Localizes declarations and/or effects
o form

declare
== local deciarative part — OPTIONAL
begin
== tistements
end;

@

with rsxr 10;
procedurs FILL_LIST is
MAX_NUMBER : conttant := 100;
type NUMBERS is range 1 .. MAX_NUMBER;
package KUMBER_IO is new TEXT_I0.INTEGER_IO(NUMBERS);

LIST_SIZE : constant ‘= 1000;
type LIST_INDEX_TYPE is range 1 .. LIST_SIZE;
package INDEX_i0 is new TEXT_LO. INTEGER _10(LIST_INDEX_TYPE);

type LIST_TYPE is armay(LIST_INDEX_TYPE moo <>)omUMBERS
LOWER _BOUND; - '

. = UPPER | BOUHD LIST INDEX TY"E = LIST FNDEX'IYPE'FIRST

R Cmmte ..,-* =

g Lt e i ==L T
“ INDEX. IDGET(LOWER sounn) LT T
INDEX_ID. GET(BPF C7_SOUND); - -

declare
LIST_OF_| NUMBERS LisT 'YPE(LOWER_ QQU'ID . UPPER_BOUND):

begin
for LIST_ITEM in LlST OF_NUMBERS'RANGE loop
NUMBER_I0.3ET(LIST_OF_NUMBERS(LIST | ITEM) 3
end loop;

for LIST_ITEM in LIST OF_| NUMBERS RANGE loup
NUMBER_!0.PUT(LIST_OF _NUMBERS(LIST_ITEM));
ond loop; :

end. -—block statement
end FILL_LIST,

"

Student Notes:

Conirol Structures

c?

3

c-8

¥4

Student Notes:

Controi Structures

with TEXT_i0; ‘(
procedure FILL_LIST is ()

MAX_NUMBER : constant : = 100
type NUMBERS s range 1.. MAX_NUMBER;
package NUMBER_10 is new TEXT_10.INTEGER_I0{ NUMBERS);

LIST_SIZE : constant := 1000;
type LIST_INDEX_TYPE is range 1 .. LIST_SIZE:
package INOEX_IO is new TEXT_10.INTEGER_IO(LIST_INDEX_TYPE);

typs LIST_TYPE is array(LIST_INDEX_TYPE range <>) of NUMBERS;

LOWER_BOUND,
UPPER_BOUND : LIST_INDEX_TYPE := LIST_INDEX_TYPE'FIRST;

begin
loop
begin
INDEX_10.GET(LOWER_BOUND),
INDEX_10.GET(UPPER_BOUND);
oxit;
excaption
when others = > TEXT_10.PUT_LINE("lllegat bounds, try again®);
ond;

ond loop;
deciare

LIST_OF_NUMBERS : LIST_TYPE(LOWER_BOUND .. UPPER_SOUNDYQ) -

begin
for LIST_ITEM in LIST_OF_NUMBERS'RANGE loop
NUMBER _10.GET(LIST_OF_NUMBERS(LIST_ITEM) ;.
ond loop;

for LIST_ITEM in LIST_OF_NUMBERS'RANGE loop
NUMBER_{0.PUT(LIST_OF_NUMBERS(LIST_ITEM)):
ond loop:

end; --block statement
ond FILL_LIST,

Py

CONDITIONAL

‘@

© Change control fiow based on the value of an expression
o |f statement
o Case statement

IF STATEMENT

£ it CONDITION then
- » statements
ond if;

H ITEM < LIST (CHECK) then
TEMP := ITEM;
ITEM : = LIST {CHECK);

‘ LIST (CHECK) : = TEMP;
(“ , ond it;

IF - THEN - ELSE

i CONDITION then
- « SIAL0MONtS
olee
- « glatoments
ond W;
¥ ITHEM « LIST (CHECK) then
TENP := ITEM;
e ITEM := LIST (CHECK);
LIST (CHECK) : » TEMP;
elee
CHECK :» CHECX + 1;
FOUND := PALSE;
ond if;

Student Notes:

Control Structures

c-9

C-10

3-5

Student Notes:

C-14

36 Control Struciures

IF - THEN - ELSIF - THEN ‘,\

o e
[4

FULL

\ i MESRAGE = LOW_PRIONTITY tren
! SELPRIORITY.FLAG (LOW);

B

it CONDITION then
.o aug.mom

cu' CONDITION the
e m"m
nd

UH

AOUTE.LOW_MESSAGE;

olslt MESSAGE « MIGH PRIORITY then
ROUTE_HGIH. MESSAGE;
NCREMENT_HGH COUNT

ord N;

IF STATEMENT

it CONDITION then

- Siatements

{ohit CONDITION %h.ll} ' o

[ol:c

statements

—

ond if;

CASE STATEMENT

eand DINCHETE EXPRESSION je
when VALUE 1 o> - - statomenis
when VALUE 2 => - - sintements

o Ahemative must be mutuslly

exciusive and exhaustive

.'\

~

Student Notes:
. CASE STATEMENT
®

GET_COLOR (USER_COLOR);
" case USER_COLOR is

when RED => INCREMENT_COUNT (PRIMARY_COLOR); .
NUMBER_RECEIVED := NUMBER_RECEIVED +1; €15

when BLUE => INCREMENT_COUNT (PRIMARY_COLOR);
NUMBER_RECEIVED := NUMBER “RECEIVEL +1;

when YELLOW => INCREMENT_COUNT (PRIMARY_COLOR).
NUMBER_RECEIVED := NUMBER_RECEIVED +1;

when others => INCREMENT_COUNT (SECONDARY _CHLOR).

end case,

case USER_COLOR is
.' when RED 1 BLUE | YELLOW =>

' C-16
INCREMENT_COUNT (PRIMARY_COLOR); 6
NUMBER_RECEIVED := NUMBER_RECEIVED +1;

when others = INCREMENT_COUNT (SECONDARY_COLOR J:

end case,

ITERATIVE STATEMENY

* Rerstion la performed using the Ads Wop which can be
flovered for difleran: kinds o leaping C-17

SASIC LOOP
loop leop

- - slatements SAMPLELINE;
| ' ond loop; UPCATE_TOTALS;

end loop;
®

Coi:lro! Structures 37

Studant Notes:

C-18

L9

C-20

3-8 Tontrol Structurae

EXIT STATEMENTS

o Exita ihe innarmest anslouing loap
* Moy have multipie auit slalements

—
(srp .)
(- - sistoments) SAMPLELING;
onit [whan SONDITION); UPOATLTOTALS,
- otasoneme) ot whon PINISHED;
ond 1oep; 06 ooy, -
WHILE LOQP
* Indefinhe iteraiion)
“whiis CONOITION lecp
© o« atatOmOnts
ond ieepi . -
1 .
ng white not FOUND lenp
CRARCH.LIST (ITEM, LIST, POUMO);
ITEM 10 ITAM ¢
né eep;
FOR LOOP
o Delinnty Heretion
jor LOOP_PARAMETER in DISCRETE_RANGE loop
- = platements
ond i00p;
fcr COLOR in COLOR_TYPE lo0p
COLOR_10.PUT (COLON);
NEXT_IB.NEW-LINE;
and loop;
for INDEX in LIST'RANGE l00p

. TOTAL := TOTAL + Li8T (INDEX),

ond loop,

N
{
.
-

g SUBPROGRAMS

¢ Modularity
o Abstraction . ..
@ information Hiding

»
FORMS
. . nE R
- - . - - - RPN N I -
W T el g e s
‘e Procedurse 7T TS TR - W
. - Abstactaggion S LT T e T

- Invoked by a procedure call . =
e Functions T :
= Returns a single value
- An expression

X) - PROCEDURE PARTS

N

Procedures are divided into two parts:
e Specification
= Defines interfaces
e Body
- Detiras implementztion details

; ‘ | Specification

P

Student Notes

S-1

$-2

$3

Subprograms 41

54

S8

5-8

2

Sivdent Motes:

Subprograms

SPECIFICATIONS — DECLARATIONS

® Specities the procedure neme

o Usad in packages and lor specitying visibility with embecded

proced:ies
Example:

5rocedure MASSIVE RETALIATION: } Procedure
procedurs ENABLE_ECM: Doclarations

procedurs ANSWER_PHONE 18 - specification pant of procedure

Bagin
- implementation detal's
ond ANSWER _PHONE .

PROCEDURE BODIES

o Procedure bodies are turther broken GOwn iNtO two pans
¢ Declarativa Part
= Deciare rtams Jocal to that procedure
= Between "it” and “degin”
o Execulzdle Pant
- Comasins executable statements
- Following “begin” and through “end”

PROCEDURES

procedurs STUFF_IT 13
~ geciare tome ciut! - Daclarative Part

begin
- 00 some stutt - Exacitabdie Pant
ond STUREIT;

PARAMETERLESS PROCEDURES

(' o No information passed to of from the procedure
e All information used is purely loca!

with TEXT_IO,
procedure DISPLAY_MENU is

begin
TEXT_10.PUT("[1] ENTER AN ITEM");
TEXT_10.NEW_LINE;
10.PUT(*[2) RETRIEVE AN ITEM");
10.NEW_LINE;
) TEXT_I0.PUT(*{3) CLEAR ALL ITEM");

. TEXT_I0.NEW_LINE;

end DISPLAY_MENU;

528

PROCEDURE CALLS

o |nvokes execution of corresponding procedure

‘ o Passes contro! to calied procedure
(¥ o Control passed back upon completion of execution

with TEXT_IO;

with DISPLAY_MENU;

procedure PROCESS_ITEM is
MAX_OPTIONS : constant := 3,
type OPTIONS is range 1.. MAX_OPTIONS:
CHOICE: OPTIONS;

package CHOICE_IO is new TEXT_10.INTEGER_IO(OPTIONS).

begin
DISPLAY_MENU:; -- Control passed to DISPLAY_MENU
CHOICE_10.GET (CHOICE).
case CHOICE is

when | =>
when 2 =>

whand =>

end case;
end PROCESS _

@

=

M; ¢

Subprograms

S-7

43

Student Notes:
PARAMETERS
® A way to pass information to and from procedures .:)
59 e Enforces S.F. principie of localization
® Two kinds of subprogram parameters
- FORMAL
- ACTUAL
FORMAL PARAMETERS

o Defined in procedure specitication
$-10 o Detinss object names and types 10 be used locally in procedure

procedure MASSIVE_RETALIATION (CODE: in STRING);

ACTUAL PARAMETERS . :

Nt

o Declared in calling program unit

o Types of actual and formal parameters must be compatitie
with MASSIVE_RETALIATION,
procedure RESPONSE is
MAX_ECM_LEVEL : constant := 5,
type ECM_LEVEL_TYPE is rangs 1..MAX_ECM_LEVEL,
§-1 MY_CODE : constant STRING : = “BLASTEM";
MY_LEVEL : ECM_LEVEL_TYPE := 3;
procedure ENABLE_ECM (LEVEL : in ECM_LEVEL_TYPE) is saparate;

begin :
MASSIVE_RETALIATION (MY_CODE);

ENABLE_ECM (MY_LEVEL);

4-4 Subprograms

end RESPONSE: ‘

e

PARAMETER MOPES
@

o Procedure formal parameters have three al'ovable modes

- in—actus! parsmeiers send inicrmation to the called
procedure (treated £5 constarii)

- out-—gctual £irameters receive information !:om the calied
prozodure (Can only be updated)
= in out=~g3tual perarneters 3000 and mesk:d information from
ths caihd procedure (trested as objecit)

- i1 no mody is stated in the formal part, then “r” is used as
the default

with TEXT_iO;
procedure PUT_N_GET is

MAX_INT : constant := 100,
type MY _INT is range 1 .. MAX_INT;
packape INT 10is mwTEXT IO NTEGER_I0(MY_INT),

INT_1, INT_2 : MY_INT := MY_INT'FIRST;

procedure EXCHANGE (FIRST, SECOND : inout MY_INT) is
TEMP : MY_INT := FIRST;

begin
FIRST := SECOND;
SECOND : TEMP,

ond EXCHANGE:

begin

INT_IO.GET(INT 1)
INT_I0.GET(INT_2);

EXCHANGE (INT_1,INT_2),

INT_IO.PUT(INT 1);
INT_I0.PUT(INT"2);

end PUT_N_GET;

Student Nutes:

Subprograms

S-12

4-8

S-13

5-14

4-6

Student Notes:

FUNCTIONS

o Different than procedures
- Return a single vahie

- Must have a return staterient (optional with procedures)

-~ Called 2s an upmﬂon
=~ Only has "in" modes

o Same as procedures -

- Hascspeciticationanfabody- -~ - .=

- Enforces S.E. principles - -

-
- .

STRUCTURE -

o Specification
- Defines interfzces

function END_OF_FILE return BOOLEAN;
o Body '
~ Implementation details
— Must have a return statement

function END_OF _FILE return BOOLEAN 15
&qin

then
raturn TRUE;
else
return FALSE;
endif;
end END OF _FILE;

Subprograms

Lokl
N

) PARAMETERLESS FUNCTIONS
0 o Allinformation needed is loca: to ::3t function

funciion HCSTILE returm BOOLEAN;
tunciion WEAPON_ARMED return BOOLEAN:
function NUKESR_BOGEYS retuin S0GEY_COUNT;

. - _FUNCTIONCALLE .

Y " -Sgtted as'an Ppr".‘,,q;oh _':_ . '-~-_ RN _—:_’v,a?_..-_-_—,, = =

BOGEYS :« NUMBER BOGEYS; .
I HOSTILE then

if WEAPON_ARMED then -

FIRE_WEAPON;

end it

ond it,)
FUNCTION PARAMETERS

& can only be of mode "in”

AMRAAM : WEAPOR TYPE;
CLOSEST_BOGEY : BOGEY_TYPE,
unction HOSTILE (BOGEY : BOGEY_TYPE) return BOOLEAN is separate.
functih WEAPON_ARMED
l”(g\o’\ff.APON :jn WEAPON TYPE) return BOOLEAN s separate;
in

-7 " WHOSTILE {CLOSEST EQGEY) then
it WEAPON_ARMED (AMRAAM) then
FIRE_WEAPON (AMRAAM),
end if;
endit;

Student Notes:

S-15

S-16

§-17

Subprograme &4-7

PACKAGES

® Allow the specitication o! groups of logically related sntities
@ Simpie form——collectior: of data Geclasations

- o General form—gioups 6f relaad antities including subprograms
. which can be called from cutside the package while innar details
remain concealed and proiected

S

Q
Q

STRUCTURING TOOL

o Packages allow us to partition up the solution space into logically
distinct, seli-contained components

o A difterent struciuring capability from the traditional use of rasting
and indesendent compilation

o Different topoiogy

Student Notes:

P-1

P-2

P-3

Packages S-1

P-4

P-5

52

Student Notos.

Packages

TRADITIGNAL LANRUAGE TOPOLOGY
PORTOAN | CoEN)

-

(S

C Jlm

(ﬁjm

—
G
{

7

e

TRADITIONAL LANGUAGE TOPOLOGY

PLSTAL)

S OO

p—————,

| S——

—X)

00

ADA TOPOLOGY

}TJJI_U
0 L_0[]
ol | E=m

C D C D (o)

@ T T —t

T N5

, o Pactages provide a facility for progressing toward the development
! of a reusable software componants industry P9

o Difterent approach from current practice ¢

(@

Packages 5-3

Student Noteu:

P-10

2N

P12

PACKAGE STRUCTURE

® Vigibis part — Packags Specitication
o Hidden part — Package Boc,

-~ Sumetimes Optional |
~ Separately Compiisable

PACKAGE SPECIRICATION ~ . C
" DVTITER ABI0LE T THE USEN OF THE PACKAGE L

®0 pana

package MATRIX_PACKAGE 18

ACCURACY : constant = 15,
MACMATRIX_SIZE : constant .= 10,

typs REAL is digits ACCURACY,
type MATRIX_INDEX_TYPE 3 ane 1 .. MAX_MATRIX_SI2E.
ype MATRIX_ELEMENTR_TYPE is array { MATRIX_INDEX_TYPE range < >,
. MATRIX_INDEX_TYPE rangs < >) of REAL,

tyon MATROLTYDE(SIZE | MATRICINDEX.TYPE '« 2) i3 record

ELEMENTS : MATRICELEWENTR.TYPE(1 .. SI2E, 1., JIZE),
ond rend;
tunction ADD (FIRST, SECOND : MATRULTYPE) return MATRICTYPE,
function SUBTRACT (FIRST, SECOND : MATRIX_TYPE) return MATRICTYPE;

function MULTIPLY (FINST, SECOND : MATRIX_TVPE) return MATRIX_TYPE,

ond MATRIX_PACKAGE; &

with MATRUCPACKAGE:

- ’nanuaean
’ MY_MATRIX - MATRIX_PACXAGE. MATRIX_TYPE(3):

YOURLMATRIX : MATRIX_PACKAGE . MATRIX_TYPE(3),
ANGTHER_MATRIX : MATRIX_PACKAGE. MATRUCTYPE(3).

S

YOUR_MATRIX ELEMENTS :o= (others = > (others ~> 2.0});
ANOTHER_MATRIX ELEMENTS := { others = >- (others =>- 4.0));

MY _MAVRIX = MATROUPACKAGE .ADD (YOURMATRIX, ANOTHER_MATRIX);
ANOTHER_MATRIX & MATRICPACKAGE. MULTIPLY (MY_MATRIX, MY_MATRIX);
wdUSER; . . E R

S P SAE . ¢ Y, =

PACKAGE BODY

o It neoded coOMans
~ Bodies of units deciared In the spesificsticn
— Any other declarations ieeded (iness are £Ot SvC-iable 10 ueer)

P-13

P-4

CRT

packace body MATRIX . PACKAGE is

function ACD (FIRST, SECCND - (AATRIX_TYPE) return MATRICTYPE 13
TEMP_SATAIX : WATALL TYPE(FIRST SIZE). y

g :
for INDEX_ 1 in FIRST ELEMENTS RANGE(1) loop
for INOEX_2 in FIRET . ELEMENTS RANGE (2) lonp
TEMP_ATEIX. ELEMENTRINOEX_ 1, INDEX.2) =
PURST ELEMENTSIINDEX 1. INDEX_2) -
SECOND . ELEMENTS(INDEX_ v, INDEX_2} .
ond loop.
0 loep;
ol TOMP_MATRIX; . N
g ADD;

fenetion SUSTRACT (BAST. SECOND : MATROL TYPE) return MATADL TYPE i -

TEMP MATRIX . MATROL TYPE(TIRST. B12E);
bogn
for INOE)_ | n FIRST ELEMENTS RANGE(1) ioop
for INDEX..2 in FAST ELEMENTS RANGE(2) leop
TEMP_MATRIX ELEMENTSONDEYX_ 1. INDEX_2) »
FIAST ELEMENTS(INDEX_1 NDEX.2) -
SECOND ELEMENTSIINUEX_1. INDEX_2).
ond 100D,
ond 190D,
sotum TEMP BATRIX:
ond SUBTRACT,

funchion MULTIELY (FIRSY. SECOND MATRUC TYPE) raturs MATCIX_TYPE o

TEMP_MATRIX MATRIC TYPE(RRST SI2€). . .
SUM AL - 00, ,'

g
for OB T = AIRST ELEMENTS ‘RANGE! 1) 100p
w: FRST ELEMENTS AANGE(2) leep
for OEX_D = FIRST ELEMENTS RANRE(2) teop
SUM - UM
FIRSY ELEMENTS(INDEX). WDEX_J *
SECOND ELEMENTSINDEX .3 WDEX_2).
ond ioep.
TEMP MATRIX ELEMENTS(INDEX 1. INDEX_2) - SUM
ond 0oy,
g loey.
tum TEMP_MATIIX.
ong MULTWLY:

g MATROUPACKASE .

B

o’

@
~r

\RO .PﬂNATE TYPES

o Allow the definition of poweriul srstract Gats types
e Defined in the private portion of the package speciication

FORMS

o Private
~— Provide operations := = /m
) ‘ — Provids subprograms defmed in paciage speciicatior

o Lisniind Privane
~— Only suborograms definad in package spaciicution

sacimge SASKRLAGRONS &

MALIUMEER : songlamt -« 180;
ype NUMBERS & ;ange 1 .. MACNUMBER;

prosdwre 0T IIMBER (NEXT_SUMBER : out IUSIOERS) ;
functien NOW-SEFVING setern IEIMBENS:

P-16

P-17

~18

4

Student Notes:

P19

p-20

P-21

package body BASKIN ROBRINS i1s
NUSABER.HOLDER NUMBERS -~ NUMBZRS FIRST,

procedure GET_NUMBER ; NEXT.NUMBER - out NUMBERS) 15

begn

NEXT_NUMBER - NUMBER_MOLLER.
NUMBER_MOLDER . ~ NUMBER_HOLOER + 1,
ond GET.NUMBER,

function NCW_SERVING return NUMBERS 1 separate

prooadure SERVE (ALNUMBER : in NUMBERS) 15 saparate,
ong BASKIN_ ROBS NS ;

with BASKIN_ROBBINS : use BASKIA_ROBBINS.
procedure ICE.CREAM

YOUR_NUMBER : BASKIN_ROBBINS . NUMBERS

begn
BASKIN_ROBBINS GET_NUMBER(YOUR_NUMBER .
oop

H YOUR_NUMBER = NOW_SERVING then

BASKNL_ROBBINS SERVE(YOUR_NUMBER).
e,

ond o,
ond loog;
ond ICE_CREAM,
with BASKIN_ROBBINS
procedure ICE.CREAM 15
YOUR_NUMBER BASKIN_RODBINS NUMBERS.
vt BASIIN_AOBBINS .
bopn
BASION_AOBBINS . GET_NUMBER(YOUR_NUMIER)
ey
YOUR NUMBER - NOW SERVING then
BASKIN_RODBWS . SERVE(YOUR_MUMOEA)
it
olee
YOUR_MUMBER : = YOUR_NUMBER - 1,
ondd.
ond le0p.
ond ICE_CREAM;

package BASKIN.ROBBINS is
type NUMBERS is private;

procedure GET_NUMBER(WMER out NUMBERS).

with SASKILROOBINS. wee BASKINLAOBBINS:

BASKNLAOBBINS .GET_NUMBER{ YOUR_NUMBER).

YOURJIWMBER = NOW._SERVING then

BASIIN_ROBDINGE. SERVE(YOURJMUMBER).

Student Notes:

, .

P-23

P24

P-25

5-10

Student Notes:

package BASKIN_ROBBINS is
type NUMBERS 15 imited private,

procedure GET_NUMBER(NEXT_NUMBER out NUMBERS)
tunction NOW_SERVING return NUMBERS.

function 1S_EQUAL (LEFT, RIGHT : NUMSERS) return BOOLEAN;

procedure SERVE { ALNUMBER : in NUMBERS);
private

MAX_NUMBER : constant : = 100;
type NUMBERS is range 0 .. MAX_NUMBER:

end BASKIN_ROBBINS,

with BASKIN_ROBBINS:
procedure ICE.CREAM 15

YOUR_NUMBER BASKIN ROBBINS NUMBERS
procedure GOTO DQ s separate.
begin
BASKIN_ROBBINS .GET_NUMBER(YOUR_NUMBER);
loop
o BASKIN _ROBBINS 1S_EQUAL(YOUR_NUMBER

BASKIN ROBBINS NOW_SERVING) then

BASKIN. ROBBINS . SERVE(YOUR_NUMBER).
out,

olse

~ GOTO 0O,
eut,

ond it
ond 100p;
00 ICE_CREAM:

APPLICATIONS OF PACKAGES

e Namad coliections of entities
¢ Groups of related subprograms
¢ Encapsulatéd data types

NAMED COLLECTION OF ENTITIES

package METRIC_CONVERSIONS is
CM_PER_INCH : constant := 2.54;
CM_PER_FOOT : constant '= 12°CM_PER_INCH:
CM_PER_YARD : constant := 3°CM_PER_FOOT:
KM_PER_MILE :constant := 1.609_344:

end METRIC_CONVERSIONS;
GROUPS OF RELATED SUBPROGRAMS

o Visible declarations of externully usahe subprograms
9 Hidden impiernentatiorvsharad intemna! entitias

ENCAPSULATED DATA TYPES

‘@ Dafine abstract data typss

® Privatefiimited private types

Student Notes:

P-26

p-27

P-28

P-29

Pachages $-11

@

EXCEPTIONS

e Purpose

o Declaring Excaptions
o Exception Handiers
o Raising Excaptions
o Propagation

RELIABILITY

o A critical slement of many mission critical systems
o Atraditions! problem ares
o Life and property depend on software

ERRORS HAVE OCCURRED, DO OCCUR, AND
WILL CONTINUE TO OCCUR!

ERAOR HANDLING LEVELS

@e-c

Students MNotes:

Excepiions -1

Student Notes:

UNDERSTANDABILITY I
@ Much of the code writteiv/read deals with abnormal circumstances.

o To grasp the meaning of a section of code, a maintenance
programmer must sort through the abnormal to tind the main
meaning.

o Tiuditional languages lack the ability 16 deal with normal and
abnormal as distinct features.

k-4

DEFINITION

@ An "exception” is the name altached to a particular exceptional
situation, user-getined or predefined.

E-5 e When the particuar situation occurs. the exception is said to be
raisad.”

e The response to the niised exception 1S calied the exceptlor“)
"handier.”

PREDEFINED EXCEPTION

PACKAGE_STANDARD s TEXT_IO
o NUMERIC_ERROR . o DATA_ERROR
o CONSTRAINT_ERROR o USE_ERROR
o PROGRAM_ERROP ® NAME_ERROR
o STORAGE_ERAOR o STATUS_ERROR . o
¢ TASKING_ERROR & MODE_ERROR

e END_ERROR

e LAYOUT_ERROR
. o DEVICE_ERRUR

-6

6-2 Excoptious

DECLARATION
@

o An exception can be declared in any declarative pert
o It follows the same visibiilty rules as any other declarstion.
o Form

OUT_OF.LIMITS : exception:
RANGE_ERROR : paception;
STACK.OVERFLOW : exception;

package INTEGER_STACK is
MAX_MUMBER : consiant := 10.000;

type STACK_TYPE is private;
procedure PUSH (A_NUMBER : in NUMBERS ;

ON * In out STACK_TYPE):
procedure POP (A_NUMBER :@ out NUMBERS :
OFF_OF : in out STACK_TYPE):

STACK_OVERFLOW : exception:
STACK_UNDERFLOW : axception:

. private
@

snd INTEGER_STACK:

typs NUMBERS it range «MAX_KUMBER .. MAX.NUMBER:

Student Notes:

t-8

e

&3

Student Notes.
EXCEPTION HANDLER

o Optional part of a frame that can contain responses to sxceptions
raised In the frame

£-10 begin
~ statements

exception
when DATA_ERROR = > - statements
when CONSTRAINT_ERROR = > -- statemants
when others = > - statements

end,

PROCESS

-
e When an exceplion is raised within a frame, processing .)
immaediately suspended. : '
€4 © What happens next depends on the prasence or absencs of an
sporopriate sxception handier.

~ Handle exceplion within an exception handier
— Propagate exception

RAISING AN EXCEPTION

g-12 T
® Can be raised implicitly by the run time system
@ Can b3 rused exphcitly by use 0f the raise statement

raise EXCEPTION_NAME.

6-4 Exoeptions

(,. packsges SIMPLE.STACK is

type STACK_TYPE is limited private;
subtype ELEMENT_TYPE is CHARACTER;

procedures PUSH (A_VALUE :@ in ELEMENT_TYPE:
A_STACK : in ou! STACK.TYPE);

procedurs POP (A.VALUE : out ELEMENT_TYPE:
A_STACK : in out STACK_TYPE): E1s
" STACK_OVERFLOW. STACK.UNDERFLOW : excsption:

private
MAXIMUM_SIZE : CONSTANT := 50;
type STACK.SIZE is range 1 .. MAXIMUM SIZE.
type LIST.TYPE is srray (STACK_SI2E) of

ELEMENT.TYPE;
type STACK.TYPE is
record
LIST : LIST.TYPE;
CURRENT_POSITION : STACK_SIZE := 1,
end record;

end SIMPLE_STACK:

package body SIMPLE.STACK is

procedure POP (A_VALUE : out ELEMENT_TYPE.
A.STACK : in out STACK_TYPE) is
begin

A_STACK.CURRENT_POSITION :=
A_STACK.CURRENT_POSITION - 1;
A_VALUE := A_STACK.LIST (A_STACK.CURRENT_POSITION):
exception
when CONSTRAINT_ERROR =>
raise STACK_UNDERFLOW;
end POP:

procedurs PUSH (A.VALUE : in ELEMENT_TYPE;
A_STACK : in out STACK.TYPE) is E-14

begin ‘
- A_STACK.LIST (A_STACK.CURRENT.POSITION) := A_VALUE:

A_STACK .CURRENT_POSITION :=
A_STACK.CURRENT..POSITION +1;

exception

when CONSTRAINT_ERROR =>
raise STACK_OVERFLOW,

(. on¢ PUSH:

Exceptions 65

Student Notes:

E-15

6-8 Exceptions

with TEXT.I0. SIMPLE_STACK;
procedure STACK_USER is

package COUNT_IO is new TEXT.iO.INTEGER.IO
(LONG_ INTEGER) :
MY.STACK : SIMPLE_STACK.STACK.TYPE:
COUNTER : LONG.INTEGER := 0
begin
loop

SIMPLE.STACK.PUSH ('a', MY_STACK);
COUNTER := COUNTER + 1:

ond loop.
exception
when SIMPLE_STACK.STACK_.OVERFLOW =>
TEXT-10.PUT (“Pushed °):
COUNT_i0.PUT (COUNTER):
TEXT_I0.PUT_LINE (° times").

end STACK_USER;

.
'R

GENERICS

: . e Purpose

e Generic Declaration.
o Generic Instantistions
o Generic Parametsrs

GOALS AND PRINCIPLES OF SOFTWARE
ENGINEERING SUPPORTED BY GENERICS

@

Reliability

: ° ® Modularity
o Understandabliity ~ @ Abstraction
e Modifiability o Localization
o Efficiency o information Hiding
‘ What is Softwars Reusability?
Why is Reusability important?

Who should be concarmed with Reusability?

G-1

G2

63

Generics 7-1

Studsnt Notos:

procedure DUP.ICATION is

type PERSON is ..
typs TARLE is ..
typs COUNT is ...
type NAME is ...

procecdure SWAF_PEOPLE (LEFT, RIGHT : in out PERSONS) 15
TECAP : PERSON := LEFT;

begin
LEFT := RIGHT;
RIGKT := TEMP;

G4 ond SWAP_PEOPLE;

procadure SWAP_TABLES (LEFT, RIGHT . in out TABLE) 1s
TEMP :TABLE . = LEFT;

begin
LEFT ;= RIGHT,
RIGHT : = TEMP;

end SWAP_TABLES,

procedure SWAP_COUNTS (LEFT, RIGHT : in out COUNT} is

procedure SWAP_NAMES (LEFT, RIGHT : in out NAME) is
begin

and DUPLICATION:

paneric
type SWAP_TYPE 1s pnvate,
procsdure GENERIC_SWAP (LEFT, RIGHT : in out SWAP_TYPE),

6-5 procedure GENERIC_SWAP (LEFT, RIGHT : wn out SWAP_TYPE) is
TEMP : SWAP_YYPE : - LEFT,
degin
LEFT := RIGHT,
RIGHT : = TEMP;
ond GENERIC_SWAP,

7-2 Gennrics

with GENERIC_SWAP,
procadure NON.DUPLICATION is

type PERSON is ...
typs TABLE is ...
type COUNT i ...
type NAME is ...

procedure SWAP_PEOPLE is new GENERIC_SWAP (SWAP_TYPE = >
PERSON);
procedure SWAP_TABLES is new GENERIC.SWAP (SWAP_TYPE = >
)
procadure SWAP_COUNTS is new GENERIC.SWAP (SWAP_TYPE = >

COUNT);
procecure SWAP_NAMES is new GENERIC_SWAP (SWAP_TYPE = >
NAM

(2]
—

begin
and NON_DUPLICATION:

Ouf |0 0ui 01

DEFINIMION |

e Ageneric is a tsmplate for a program unit.

o Instantiation gives us an actua! program unit from that‘tamplne.

Student Notes:

Generics

G-6

G-8

7-3

Student Notes:

G-9

G-10

G-11

7-4 Generics

GENERIC DECLARATIONS

e Two Classes
— Generic Subprograms

generic
=~ GENERIC FORMAL PARAMETERS
procedure (function) ...

— Generic Packages
generic

— GENERIC FORMAL PARAMETERS
package . . .

GENERIC INSTANTIATION

o Creates an actual instance of a generic un!
@ “Fills in” the genenic formal parameter with an actual parameter

GENERIC PARAMETERS

o Type
e Value
o QObject
o Subprogram

@0

MATCHING RULES

type 10ENTIFIER 15 digits <>,
type IDENTIFIER is delta <>,
type ICENTIFIER is range <>,
type IDENTIFIER is (<>):
type IDENTIFIER is array
(INDEX_YYPE) of
COMPONENT_TYPE;

type IDENTIFIER is array

(INDEX_TYPE range <>) of
COMPONENT_TYPE;

Any tioating point type

Any fixed point type

Anvy integer type

Any discrete type

Any constrained array type with same
INDEX_TYPE and
COMPONENT_TYPE

Any unconstrained array type with

same INDEX..TYPE and
COMPONENT_TYPE

MATCHING RULES (Continued)

type IDENTIFIER is access
NAME;

type IDENTIFIER is private:

type IDENTIFIER is limited
private;

OBJECT : in TYPE_NAME;

OBJECT: in out TYPE_NAME,;

with procedure NAME
(PARAMETERS)
[is <> | is DEFAULT_NAME]):

with function NAME
(PARAMETERS)
fis <> 1 i DEFAULT_NAME};

Any access type that designates
same NAME type (subject to
constraint rule)

Any type except a limited type

Any type

Value or object that is of same
type as TYPE_NAME

Object that is of same type as
TYPE_NAME

Procedure that conforms to
parametar number and types

Function that contorms 1o
paramater number and types and
has same result type

Student Notes:

Generics

G-12

G-13

7-5

Student Notes:

generic
type ELEMENT_TYPE is private.
SIZE_OF_STACK : in POSITIVE,

package BOUNDED_GENERIC_STACK s
type STACK.TYPE is limited private,

6-14 procedure PUSH (AN_ELEMENT : in ELEMENT_TYPE.

ON . in out STACK_TYFE) .

procedure POP (AN_ELEMENT : out ELEMENT_TYPE.
OFF.OF : in out STACK_TYPE):

private

type STACK_COUNT is range 0 . SIZE_QOF_STACK.

type STACK_ELEMENTS is array (STACK_COUNT)
of ELEMENT_TYPE:
type STACK_TYPE s

record
T0P . STACK_COUNT (= 0.
BOTTOM : STACK_COUNT := 1:
LIST . STACK_ELEMENTS:
end record

end BOUNDED_GENERIC_STACK:

7-6 Generics

G-15

G-16

G-17

Student Notes:

with BOUNDED_GENERIC_STACK.
procedure DEMO_STACK s
LENGTH : constant :-- 80:
subtype NAME_TYPE is STRING (1t . LENGTH);

package NAME _STACK 1s new BOUNDED. GENERIC.STACK

(SLEMENT_TYPE => NAME_TYPE,
SIZE.OF_STACK => 100):

STACK.OF .NAMES : NAME_STACK.STACK.TYPE:

begin
#n6 DEMO_STACK:

GENERIC BODIES

e (enenc Formal Parameters
o Writing Generic Bodies

GENERIC FORMAL PARAMETERS

Tescribes twa things:
" @ Matching requirements for actual parameters
e Qperations that can be assumed within the generic body

Generics

7-7

ACTUAL PARAMETERS

MATCHING RULES

GENERMC FORMAL PARAMETERS

OPERATIONS -

V2

GENERIC BODY

genenc
type INTEGER_TYPE is range < >;
procedure NEXT (ANY_INTEGER : i out INTEGER_TYPE).

procedure NEXT (ANY_INTEGER : in out INTEGER.TYPE) 1s
mn
be2NY,!NTEGER ‘= ANY_INTEGER + 1;
exception
when CONSTRAINT_ERROR = .-
ANY_INTEGER = INTEGER_TYPE FIRST:
and NEXT

genenc
type DISCRETE.TYPE is (< >):
proceduce NEXT (ANY_DISCRETE_VALUE : in out DISCRETE_TYPE);

procedure NEXT (ANY_DISCRETE_VALUE : in out DISCRETE_TYPE) is
begin

- "+* NOT AVAILABLE

ANY_DISCRETE_VALUE := DISCRETE_TYPE ‘'SUCC {ANY_DISCRETE_VALUE):
sxoention

wiren CONSTRAINT_ERROR - >

ANY_DISCRETE_VALUE . = DISCRETE.TYPE'FIRST;

end NEXT:

7-8 Generics

Student Notos:

G-18

Student Notes:

./'\-
‘

GENERIC BODY

G-21
o Delines implamentation of the genanic unit

o Can use operations available from the generic formal parameters

USING FORMAL TYPE
~ . PARAMETERS
@ o2 |
o Specify which operations are available for the type

generic
PROMPT : in STRING:
G-24 type ANY_INTEGER_TYPE is range - .
procedure GET_VALID_INTEGER (AN_INTEGER - out ANY_INTEGER_TYPE).

Generics 7-9

G-24

G-25

7-10

Student Notes:

Generics

with TEXT_IO, ”\

procedure GET_VALID_ INTEGER (AN_INTEGER out ANY_INTEGER.TYPE} 1S

package INT_IQ is new TEXT_IO.INTEGER_10 (ANY .INTEGER . TYPE;

begin

loap
begin
TEXT_10.PUT (PRONPT),
INT_I0.GET (AN_INTEGER),
axit;
sxception
when others - .-

TEXT_10.SKIP_LINE: .-

TEXT.10.PUT_LINE (" "INVALID" ")
end:
end loop:

end GET_VALID. INTEGER.

peneric

SIZE s NATURAL,

type ELEMENTS is private.
package STACKS s

lype STACK TYPE 15 hmited private

procedure PUSH (STACK 1n oul STACK TYF
VALUE 0 ELEMENTS:

procedure POP (STACK nout STACK TyRt
VALUE out ELEMENTS:

private
-« Stack size determinen by
-- QeNeric vaiue parameler .
type NUMBER..OF _ELEMENTS 15 range 0. SI2¢

type ELEMENT .ARRAY 1s array (NUMBER_OF ELEMENTS) :
ol ELEMENTS
type STACK_TYPE 15 .
record -

DATA ELEMENT_ARRAY.
TOP NUMBER_OF_ELEMENTS 0
end record.
end STACKS,

—

generic
type ELEMENTS 1s private,
type INDEX 15 (< >);
type ARRAY_TYPE is array (INDEX) of ELEMENT:
with function "< " (LEFT, RIGHT : ELEMENT) return BOOLEAN;

procedure SORT (LIST : in out ARRAY.TYPE);

procedure SORT (LIST : in out ARRAY_TYPE) is
TEMP : ELEMENT,

begin -- SORTY
for QUTER in INDEX first..INDEX'pred(INDEX iast) loop
for INNER in INDEX succ(OUTER)..INDEX tast loop
it LIST(INNER) < LIST(QUTER) then
TEMP .= LIST(INNER);
LIST(INNER) : = LIST(OUTER);
LIST(OUTER) .= TEMP,
endif.
end loop.
end loop:
end SORT;

Studant Notes:

Generics

7-11

Student Noies:
TASKS

Purpose

Indepengent Tasks 4
Communicating Tasks

Tasking Statements

TASKS

«+ A task is an entity that operstes in
paralisl with other entities

.- Tasking may be implemented on , ’ RN
-+ Single Processor
« - Multhprocessors
-« Muiti-computers

TASKS

e Important aspect of embedded systerns .
o Neglected in most languages currently in produttion use

— Lack of contidence in control of parallelism
— Low level teature

e Need an implementation independent moda! |
e Ada draws up operating system features into the language i

Tasks 8-1

T-5

7-6

@

8-2

Tasks

Student Notes:

ADA TASKING MODEL

(Communicating Ser.uentia! Processas)

Petri Net Graphs

- Used as a tool to explain tasking model

Parallel Independent Processes

- "Simple” form of tasking model

Communicating Sequential Processes

- "Full" Ada tasking maodel

PETRI NET GRAPHS

P T P2 T2 PA T3 P4 T

PS

. PETRINET TRANSITION RULE

Take one token from each of the enabled transition’s input places;

geposit one token in each of the transition's putput places

N

CONCURRE?", PETRI NETS
* Bassd on the dea of a fork, 10 crests & N
thweed of control

Koo

* For 8 precess 10 end, it must return beck to one

thrend of santrel

be_in ::OI‘ j
Ob——

PARALLEL INDEPENDENT PROCESSES

s No communioation, N0 rPABeTVOUS
* Process thetl starne sthers must wail for all v complete

S
8}0

I y

Student Notes:

. e,

Tasks 8-3

7-10

T-12

8-4

Tasks

Student Notes:

procedure MAIN is

fask 71,
ek T2;

task body T11s
begin

mll;
end 71,

task body T2 is
begtn
null;
end T2;
begin
null;
end MAIN,

with TEXT_10; use TEXT_I0;
procedure TASK_EXAMPLES is

task PLAIN;
task WiTH_LOCAL_DECLARATIONS;

task body PLAIN is
begin
nult;
end PLAIN;
tasx booy WiTH_LOUAL_DECLARATIONS 1s
FOREVER : constant STRING ;= “torever”;
begin
loop
PUT_LINE ("This task puts this message out");
PUT (FOREVER). ’
NEW _LINE;
end loop.
end WITH_LOCAL_DECLARATIONS;
begin
— both tasks activated here
nult, -
— This subprogram does not terminate execution until

~ all dependent tasks are ready to terminate
end TASK_EXAMPLES:

procedure MONITOR_GATE is

task WATCH_HEAT_SENSOR;
task WATCH_SOUND_SENSOR:

prozedure SOUND_ALARM is separate:
task body WATCH_HEAT_SENSOR is separate;
task body WATCH_SOUND _SENSOR 15 separate;

begin

— lasks are activated
null,

end MONITOR_GATE:

separate (MONITOR_GATE)
1ask body WATCH_HEAT_SENSOR is

tunction DETECT_MEAT return BOOLEAN 18 separate;
begin
loop
1t DETECT_HEAT then
SOUND_ALARM:
end i,

end (00D
end WATCH_NEAT_SENSOR;

separate (MONITOR_GATE)
fask body WATCH_SOUND_SENSOR is

| tunction OETECT_SOUND return BOOLEAN s separate,

beQin

. loop)
{t OETECT _SOQUND then
SOUND_ALARM,
end i,

end !oop:
end WATCH_SOUND_SENSOR,

COMMUNICATING TASKS

o Ada Tasking Mode!
s Rendevous
© o TYask Entnes
e Commumcalion Process

Student Notes:

~

T413

Tasks 85

a

T-16

T17

T-18

8-6 Tasks

Student Notes:

TASK COMMUNICATION

Ada Tasking Mode!:

Communicating Sequential Processes

FRENDEZ2VOUS
Tesk A; Task B;
suninre
, sccept
siatement
entry eall _f
\. J \ -
RENDEZVOUS

o The process in which two paraliel tasks synchromze and optionally
communicate

e A rendezvous is the interaction that occurs between two paraliel
tasks when one task has calied an entry of the other task and 2
corresponding accept Statement is being executed by the other
task on behalf of the calling “ask

RENDEZVOUS

+ Deflned In the specttication of & task
» Define the communication paths to a task

. Anaﬂodﬁunomldoomwhonm:-lmmm

communicate with & tesk

TASKENTRIES -

task PRINTER_CHANNEL is

entry PRINT (JOB : in LISTING_TYPE).
end PRINTER_CHANNEL.

task Cl OCK is
entry SET_TIME (CURRENT : in TIME);

entry GIVE_TIME (CURRENT : out TIME):

end CLOCK;

task LAUNCH_BOMBERS is
~ entry LAUNCH,

entry FAIL_SAFE (CODE : in PASSWORD).

ends LAUNCH_BOMBERS:

COMMUNICATING WITH A TASK

o Tasks are communicated with through their entries using an entry

call

PRINTER_CHANNEL .PRINT (MY_JOB);

CLOCK SET_TIME(NEW_TIME);
CLOCK.GIVE_TIME(THE_TIME).

LAUNGH_BOMBERS.LAUNCH:

_T

Student Notes:

7-19

'3

T-21

-

Tasks 8.7

T-23

cf_f‘

T-24

g ' 8-8 Tasks

Student Notes:

ENTRY CALL

o Places an entry call on the queue associated with the entry of a task
¢ Does not immediately start a rendezvous

ACCEPT STATEMENT

o Occurs in a task body
e Corresponds to task entries
o Specifies actions te Ls perlormed during rsiides Sud

RENDEZVOUS

When an entry has been called and the corresponding accept smemem
is reached, rendezvous occurs

- Rendezvous is the execution of the sequence of statements following
the *do” and continuing to the “end”

Atter rendezvous is completed, the two tasks execute in paraliel 2gain

Student Notes:

ACCEPT STATEMENT

o Syntax

accept_statement ;=
accept entry_simple_name ((entry_index)]!formal_part}{do
sequence_of_statements
end [entry_simple_name]],

e Examples . T-25

accept PRINT (JOB : in LISTING_TYPE) do
...--sequence of statements
end;

accept SET_TIME (CURRENT :in TIME) do
...—sequence of statements
end;

accept LAUNCH:

task CHANNEL_10 is -
entry PRINT (JB : in LISTING_TYPE):
end CHANNEL_IO;

funstion FREE return BOOLEAN is separate;
procedure SEND (JOB_TO_PRINT : in LISTING_TYPE) is separate.

tas« bogy CHANNEL 10 1s
LOCAL_COPY . LISTING_TYPE.
begin
loop

accept PRINT (JOB “in LISTING_TYPE) do T-26
LOCAL_COPY : = JOB;
end;
loop
exit when FREE;
end loop. .
SEND (LOCAL_COPY); .-
end loop:)
encd CHANNEL_IO;
begin --main program

a9

CHANNEL_I0.PRINT (MY_J03),

Student Notes:

(. . procedure CO'"™'T_DOWN 15

task SEQUENCER 15
entry ONE;
entry TWO;
entry THREE,
end SEQUENCER,

procedure DO_NOTHING is
begin
for INDEXin 0 .. 10_000 loop
null;
T-27 end loop;
end DO_NOTHING;

task body SEQUENCER is
begin
accept ONE; DO_NOTHING:;
accept TWO: DO_NOTHING;
accept THREE;
end SEQUENCER:
begin --COUNT_DOWN
SEQUENGCER.ONE;
SEQUENCER.TWO:

SEQUFNCER THREE:
Q‘ end COUNT_DOWN:

8-10 Tasks

TASKING STATEMENTS

e [Defay Statement
e Select Statement
o Apor: Statement

DELAY STATEMENT

delay_staiement ;= delay Simple_expression:

- ® Suspenos further execution of the task tor at least the time interval

specified

e Simple expression must be of the predefined fixed point type

DURATION
SECONDS : DURATION:
detay CURATION (3.0 * SECONDS);

tash CHECK_RADIATICN_LEVEL:

function CUT_OF_LIMITS réturn BOOLEAN is separate;

procedure SOUND_ALARM is separate.

12sk body CHECK_RADIATION_ LEVEL is
begn
loop
it OUT_OF_LIMITS then
SOUND_ALARM;
else
delay 5.0,
end if;
end loop;
end CHECK_RADIATION _LEVEL:

begin
null;
end MONITOR.

Student Notes:

1-28

Tasks 8-11

T7-33

Student Notes:

Student Notes:

SELECT STATEMENT

» Allcws for choosing between multiple entries for renoszvous
o Aliows for choosing the semantics of an entry call

Select_statement ;: = selective_wait i
conditional_entry_calt |
timed_entry_call

task BANK_TELLER is
entry MAKE_DEPOSIT (AMOUNT : in FLOAT);
entry MAKE_WITHDRAWAL (DESIRED : in FLOAT,
AMGUNT " out FLOAT);
enC BANK_TELLER;

task bscy SAMNK_TELLER 15
bejm
leop

select
accept MAKE_DEPOSIT (AMOUNT :in FLOAT! d¢

ens,
or

accept MAKE_WITHDRAWAL (DESIRED : in FLOAT;
AMOUNT : out FLOAT) do

end;
end salact;
2ng 1005,

end BANK_TELLER:

o
Y

task BANK_TELLER 18
entry MAXE_DEPOSIT (AMOUNT : 1in FLOAT),
entry MAKE_DRIVE_UP._DEPOSIT (AMODUNT : in FLDAT),

end BANK_TELLER,

SELECTIVE WAIT. YITH ELSE

toop
selelt

accent MAKE_DEPOSIT (AMOU NT - in FLOAT) do

eng.

of
accent MAKE_ORIVE_UP_DEPOSIT (AMOUNT : in FLOAT) do
end,
eise
DO_FILING;
engd select,
end loop,

SELECTIVE WAIT WITH GUARDS

lozo

seinCt .
when BANKING _HOURS = = .
accept MAKE_DEPOSIT (AMOUNT tin FLOAT) do

end,
or
when ORIVE_UP_HOURS =>
accent MAKE_DRIVE_UP_DEPOSIT {AMOUNT : in FLOAT) do

end:
glze
DO_FILING.
g selant,

€10 109p.

Student Notes:

1-34

1-35

sy

Student Notes:

T-37

2-14 Tasks

SELECTIVE WAIT WITH A DELAY ’

looo
select
when BANKING_HOURS = =
accepl MAKE_DEPQOSIT (AMOUNT 1n FLDAT) cc

end.
or
when DRIVE_UP_HOURS =>
accept MAKE_DRIVE_UP_DEPQSIT (AMOUNT : in FLOAT) do

end;
or
declay DURATION (2.0 * HOURS)Y:
TAKE_A_BREAX:
end select:
enc leop:

SELECT!IVE WAIT WITH TERMINAYTE

ooy
select (

- -y

accept MAKI_UEPDSY (A GUNT L i "LOAY) Ly

end,
ot
accep! MARE_CRIVE_UP_DEFDSIT (AMOUGT Lin FLCAT)
do

end;
or
- terminate,
end selact,
enc l00p;

CONDITIONAL ENTRY CALL

conditional_entry_call ::=
select
entry_call_statement
| sequerze_of_staiements |
glse N\
sequence of_statsments
enad setect,

select

BANK_TELLER.MAKE_DEPOSIT (20.0C);
else

GIVE_UP.
end SELECT,

TIMED ENTRY CALL

timed_entry_call ;.=
. Seeli '
' entry_call_statement
[seouence.of _statements |
er
delgy_zlternative
eng select

select
BANK_TELLER.MAXE .DEPQSIT (1.000.00):
or
delay DURATION (10.0 * MINUTES);
TAKE_A_HIKE;
e:id select;

Student Notes:

T-40

T-42-.

{3 guth
AM

Tasks 8-15%

Tasks

Stucent Notes:

ABORT STATEMENT

» apon_statement . = aborttask_name | tass_name;

(Causes a lask and all dependent tasks to tacome AENJAMAL thus
preventing any turther rendezvous with the task

® Anabnormal task becomes completed in cerain circumstances

— accept statement
- select statament
— dslay statemient
— antry cail
— activating
s Celing an ABMNORMAL task or if 2 coii nas besn mel2 T an enir,
and is Jueued raises the exceplion TASRING_ERF IR

ABCRY STATEN ST

“ALanort STement should e used 0niy in Sxigoy Seveie Situahons
fecuinng uiscundional termination”

o~

STUDY

GUIDE /WORKBOOK

Technical Training

FUNDAMENTALS OF Ada PROGRAMMING/
SOFTWARE ENGINEERING

DECEMBER 1987

USAF TECHNICAL TRAINING SCHOOL
3390th Technica! Training Group
Keesler Air Force Base, Mississippi

E30AR4924 004
E408T4924 020
S0P 893

Designed For ATC Course Use

ATC Mowor o i) OO NOT USE-ON THE OB

Conm=Comp Systems Advanced Training Division HO E30AR4924 004
Keeslaer Air Force Base, Mississippi 39534-5000 E4LOST4924 020
1 Oct 1987

Philosnphy

The philosophy of the wing emerges from a deep concern for individual Air
Force men and women and the need to provide highly trained and motivated per~-
sonnel to sustain the mission of the Air Force, We believe the abilities,
worth, self-respect, and dignity of each student must be fully recognized. We
belleve each must be provided the opportunity to pursue and master an occupa-
tional specialty to the full extent of the individual's capabilities and aspi-
rations, for the immediate and continuing benefit of the tandividual, the Atlr
Force, DoD and the country. To these ends, we provide opportunities for indi-
vidual development of initial technical proficiencies, on-the-job training in
challenging job assignments, and follow-on growth as supervisors. In support
of this individual development, and to facilitate maximum growth of its stu-
dents, the wing encourages and supports the professional development of its
faculty and administrators, and actively promotes innovation through research
and the sharing of concepts and material with other educational institutions.

CONTENTS

Chapter Title Page
1 Introduction « « o o 4 v ¢t 0 4 e b e b et e e e e s e e s e s 1-1
2 Training Evaluation and Feedhack System . v o o ¢ ¢ « ¢ o « o o o 2-1
3 Fundamentals Of Ada SYSLeMS . ¢ ¢ ¢ ¢ « o o« o s o s & o s o » & & 3-)

4 Basic Ada Types .« ¢ v 4 ¢ ¢ 4 o o o & &

S Conirol SLTUCTUTES + o & « « o« o 5 o o s o o o s o o o & & N 5-1
6 SUDPTOSTAMS ¢ & & & o & s ¢ & o s o« & T . 6-1
7 PaCKAZES & ¢ ¢ & ¢ & i 4t t e e s e e e s s e s e e s 7=1
8 EXCEPTIONS & ¢ 4 o ¢ 4 o ¢ o s o 5 ¢ & ¢ o s & ¢ s s s s o s « » 8-1
S Generics o ¢ o 4+ 4 ¢t ¢ 4t a et e h e e e s e e e e e e 9=

lo Ta'k. L] L] » L]] L] L) L] - . L) - - L]
11 Program Design Using Ada

Appendix A: Software Engincering Standards . . . ¢« « ¢« v ¢ ¢ « &« o « o A=

Appendix B: Ado Clogsaty « o« + « & o &

¢ 6 e+ 2 8 & & & ¢t & s s 8 s e B'l

i

@

Al

Chapter 1

ORTENTATION

WELCOME

Welcome to the Fundamentals of
Ada Programming/Software Engineering
course. This class will give you
knowledge of the fundamentals of
engineering good Ada systems. It's
a4 challenging class with time split
between lecture and hands on exer-
cises. It is our intention to wmake
this course as informative and int~-
eresting as possible; however, we
cannot accomplish this without your
assistance. You are encouraged to
participate in discussions and con-
tribute as-much as possible to en-
hance your learning and wake the
course more meaningful and enjoy-
able.

In this chepter, we will cover
the student critijue progra=, cnergy
conservation, fraud, waste and

abuse, administrative policies, and-

a4 course overview .
STUDENT CRITIQUE PROGRAM

To ecritique something 1s to
express your opinion about the sub-
ject., The Studen: Critique Program
exists for all ATC MTT Courses and

‘at all Technical Training Centers

because we are interested in your
welfare and the effectiveness of our
training. The purpose of the pro-
gram is based upon the assumption
that whatever bothers or distracts

you will adversely affect your
learning. :

Although critiques are adain-
igtered at the end of the course,
you may critique training at any
tiwe during this course of instruc-
tion. Critique forms (ATC Form 736)

are readily accessible in every
classroom. Should you recognize a
problem or a deficiency, do not
hesitate to critique it. Likewise,
you may submit critiques recognizing
outstanding wunits of instructiom,
instructors, facilities, equipment,
ete, We do ask you to eritique
training and facilities on a sepa-
rate form. Your critique will be
given careful consideration; it will
provide us with valuable ideas which
may improve training, as well as
facilities and services.

Your sincere ccoperation in the
Critique Program can be bheneficial
to 21l students that follow vou.

All critiques can be submitted
without fear of reprisal or prej-
udice.

FRAUD, WASTE AND ABUSE (FW&A)

The Air Force policy on fraud,
waste and abuse is to use all avail-
able means to prevent, detect, cor-
rect and discipline, as warrvanted,
perpetrators involved in FWSA.

Definitions

1. FRAUD: Intentional misg-
leading or deceitful conduct that
deprives the Goverument of 1its re-
sources or rights.

2. WASTE: Extravagant, care-
less or needless expanditures of
Covernment resources from improper
or deficient practices, systems,
controls or decisions.

3. ABUSE: Intentional wrong-
ful or improper use of Government

resources, i.e. misuse of rank, po-
sition or authority.

Any Person who knows of fraud,
waste or abuse has a duty to report
it to his or her supervisor, .wm-
mander, inspector general, Air
Force Audit Agency (AFAA), AFOSI,
the security police or other proper
authority. Each member of the Air
Force, military or ecivilian, has the
right to file a disclosure without
fear of reprisal. The following are

examples of FW&A chat students
should avoid:

1. Abusing equiprent,
intentional or not.

wvhether

2. Wrongful
student literature.

destruction of

3. Willful waste of janitortal
supplies.

-

4. Facilities abuse.

5. Unauthorized use of Govern-
ment telephonc services.

6. 1ntentional lack of person-
al commitment 1in doing a duty or
task for whizh a salary is being
paid.

7. 1Intentional practice to
avoid making corrections to known
deficlencies in order to prevent
fraud, waste and abus2.

8. Waste/unauthorized distri-
bution of Government supplies.

ADMINISTRATIVE POLICIEY

INSTRUCTCE.:

Duty hours are to dur~
ing this course. Ten minute hruaks
are provided cach hour with one hour
for lunsh.

You are asked to reschedule

1=2

any appointments during the langth
of this course. 1f an appointnent
cannot te rescheduled, inform the
instructur as soon as possible. T1f
you miss a portion of a class it {is
your respcnsibility to make arrance-
ments with the instructor to tind
out what material was missed and how
it can be made up. If for any rea-
son you migs mote than 10 percent of
the class time you can be removed
from training and asked to resched-
ule.

A class leader will be ap-
pointed by the instructor during the
first hour of class. The class
leader acts as your representative
and §is tasked with the fallowing
regponsibilities:

1. Assist the instructor (=
maintaining order at all timas dur-
ing the class period.

2. Supervise classroom clean-
\.lp-

3. Assume contrnl of the class
in the abgence of the jfnstructor ot
as directed.)

4. Act as spokesman for the
class in any wmatger which the class

members deem nccessary, usually mat=

ters which require
tention.

supervisory at-

$. Encourage military students
in the class to maiatain hignh stan-
dacids 1Aw AFR 35-10.

Facilities Avallable

Room Bruak Area

Room Pemale Latrine

Room Male Latrine

Room Administration Offices

Phone Number

COURSE OVERVIEW

. ci». Unit 1
’ Unit 2:
Unit 3:

Unit 4:

Unit 5t

Unit 6%

. %

Intreduction

Tre.ning Evalustion Feed-

back Systen

Fundamentals of Adas Systems

Basic Ada fypcs

. Conttol Structures

Subprograns
Lo

Unit 7: Packages

Unit 8: Exceptions

Unit 9: Generics

Unic 10: Tasks

Unit 1l: Program Design Using Ada

Unit 12: Develop Software Using Ada

1-3

CHAPTER 2

" THEE TRAINING EVALUATION PEEDBACK SYSTEM

OBJECTIVE

Using the student handout as a
referance, - briefly describe the
purpose of the training evaluation
program. ‘

INTRODUCTION
“+
The trainiﬁ{ evaluation feed=-
back svsten is a useful too! to keep
our courses up to date with the re-
quirewents of the Air Force.

INFORNATION
. PURPOSE OF EVALUATION

The purpose of the training
evaluation program is to obtain the
information necessary to deternine
the:

l. Ability of graduates to
perform their assigned task to the
level of proficiency specified in
the applicable training standard.

2. Extent to which skills ac-
quired in training are used by grad-
uates in the field.

3. Extent to which knowledge
attained in training is retained by
graduates in the field.

4, Need for revisions in the
training standavds and courses to
improve training effecciveness and
responsiveness to the needs of the
using commands.

The evaluation includes the
collection, collation, analysis, and
interpreatation of feedback infor-
sation to assess the effectiveness
of training and the extent to which
course graduates satisfy field per-
formance requiresents.

RESPONSIBILITIES
Coamands conducting formal
ctourses are required to conduct
evaluations to determine the ade~

quacy and televance of training and
to make revisions as needed.

Using commands are required to
participate in the evaluation pro-
gram by furnishing information to
representatives of training activ-
icies during:

l. Fielid viglg N

2, Completing and
field survey questionnaires

3. Completing Training Quality
Reports to identifv training defi-
ciencies and recommending changes
to training standard tasks, Xntowle
edge or proficiency levels that are
not meeting command regyuirements,

SUMMARY

The program provides a means
wheredby supervisors and gracduates
can help training activities develop
and eonduct training programs that
are best suited to their necds.

@

returning

®

e

Chapter 3

FUNDAMENTALS OF Ada SYSTEMS

OBJECTIVE

Given a simple progranm specifi-
cation, student instructional mate-
rials, and student notes, engineer a
program in Ada that correctly imple-
ments the problen. Program wmust
conform to course software engineer-
ing standards...vInp&ructor may pro-
vide up to & assists.

INTRODUCTION

You may have heard the claim
that "Ada is just another program—-
ming language.” Well, that depends
or your point of view. Any program-
ming language it & tool to transform
a software design into the actual
machine language 1instructions that

a computer performs. Ir. that re=

spect, Ada is anothar cemputer lan-
guage, Just ar a hand shovel and
diesel powered shovel are both tools
to -dig a basement. However, when
digging a basement, you should
choose the tool that best supports
the job. When developing soitware,
vou should choose the tool that best
supports the goals and principles of
software engineering.

INFORMATION
SOPTWARE ENGINEERLNG

What 1is software engiuoeering?
For the purposes of this course, we
vivw it as an orderly application of
tools to develop software that is
reliable, maintainable, efficzient,
and understandable. Using this def-
fnicion, a programming language 1is
Just one of a number of tools that
is used when called for in applying
some mechodolugy to develup sofe-
wiarTe.

We can identiiy a number of
principles to kecep in mind while
developing software that supports
the goals of reliable, mgintainabdie,
efficient, and understandable soft~
ware. These principles are:

o Abstraction = Considering
only the important features
at this level and {ignoring
the unipportant details.

o Information Hiding - Making

underlviney details inacces-

sible.

o . Modularity - Breaking up a
large systcm into manageable
pleces.

6 Localizacinn = Physically
grouping togather loglcally
relaced entities,

o Completeness - Ensuring chaz

all required features are
present.

o Confirmabilicty - Ensuring
that the system can be test-
ed to make sure it's com-
plete and maets the tequire-
ments .,

o Uniformity - Ensuring that
there are 0o unnecessary
differences in notation
that can be_confusing.

Throughout the course we will
telate the focatures of Ada to these
goals and principlas of softuare
engineering.

Ada LANGUAGE FEATUXES

Anyone who has looked through

the Ada rveference manual can tell
you that Ada is a complex language.
The features of Ada are inteztatede-
in other words, to write cven a sim-
ole Ada promram, you need at least a
shallow knowledie ¢f A =umbae= of
language features,

Data Typing

Ada's
Steong

One of these features is
use of strong data typinz.
typing means that. every object
(variables and constants are ob-
jects) has to be associated with
some type. This type defines the
set of values“and the set of oper=
stivas for that objec:. Ada also
doesn't allow you to mix apples and
oranges; if vou have two objects of
different Types, you can't imnplicit-
ly mix them in ar operation. In
other languages, you muy declare an
object to be an integer, character,
etc. 1..5 is similar to declaring
an object in Ada, althouth Ada
takes this one step further in that
iz allows you to declare ynur own
distinct cypes. This helps you
wsiel the daty go-usrrerp of eha req)
world prohlem,

Pruvgran Units

Prog & units are structures
used to koup large sofruare
s¥stems int smaller, mure manige-
atle pares. An Ada proaranm stoeld

theraiora use prodran ucits to hroan
th= code up fur~ easlily widerszand=

able segments. Bachi program unit
has two parts: a spacification and a
body. The owcificuzion (s ghe
losical view c¢f cthig program unit

which defines the lacerface to other
program units (aAhscrsation). The
body dofinaa how the datails of the
program unit are implemented. Thesc
details that aze in the body are
inaccessible to other program unics
(Irnformation Hiding). ‘Thi separa=-
rion of spect{fication aud. body ale
low you to vicew these proveam unlics

more like black boxes with the com-
munication cvequirements specified
by the specification.

There ave four diffcrent kinds
nf program units that we .an use to
break up our system. These avte:

¢ Subprograms = Program units
that perform an vpertation ot
calculation.

o Packages - Program unics
that allow you to group to-

gether logically related
entities.
0o Generics - Program units

that Keneralize subpregrims

or packages.

o Tasks - Program units that
fun in parallel with other
program units.

In class, we'll explore each
of these different progrum units.

Program Structurce

An Ada proyran is simply a main
subprogran. The bady to this main
subprogram contains two parts: the
declarative part and the executable
part, The declarative part is where
we declare our types, ohjects, or
even other progrunn unizs. The exe-
cutable par: coutaius tne statements
to be perforsed Jduring ewaentier.s A
nimole Ada prodram would then
Like this:

. .
avu

procedure MalN is
== Dueclarative Part

'begin
oull; = = Executable Part
end MAIN;
The declarative and executable parts
are separazed by the word 'bagin',

Y

§
|
%
1
i

Everything to the right of a double
dash '=' would be a comment. We'll
add wmore to. this basic structure
later in class.

PROGRAM LIWFARY

The concept of a program li-~
brary is vary important in Ada. The
program library is simply a collec-
tion of information on all ecompila~-
tion units, or program parts, Chat
have been compiled into a library.
This is important in Ada because the
language allows you to separataly
compile parcs of the system that are
in different files. When complling
a progTen unit, the compiler hssg
access te a rvecorc of everything
else that has been compiled up to
this point. This powetful feature
enables the compiler to eniorce its
visibility and strong typing rules
across program urnit boundaries.

SIMPLE CONT®CL STRUCTURES

Ada has a auwber of control
sTouctures. Dusing thic lewiuve,
we'll cover some simple control
structures such as assigament, 1§,
and loop statements. These will al-
low you to begin writing simple Ada
Progranms.

STMILE [NPUT/CUTWIT

wWhen luoking at the Ada jhn-
Suags, yeu have to keep in mind the
application for which it wag de-
siznued: embadded computwr systens.
These are systens whore the computyr
is only a3 small part thit contrels
the rest of the sysrtem, such as tha
conputer that controls the ignicion
system in, your car, These oabedded
systemz typically have small memocy
space and unique 4input/output re~
quirements. because of these re-

" quirewents, the language dexigners

chose not to make textual input/
output intrinsi: to Adw. This way,
thuue eabecded systams programs that

3-3

don't require input or output of
text don't have to suffer with the
overhead of these routines.

For programs that necd text
input/output, therc is a predefined
package in the Ada program librazy
that containa a set of input/output
routines. The routines in this
package TEXT 10 are only accessidle
to those programs that explicitly
tie into this package. In class,
you'll see how we do this.

SUFMARY

Ada is a language designed for
engincering softwar: svystexs. It
directly supporte the goials and
principles fdentified for safiware
englneering. It's a complex lan-
guage with many integrated fea-
tures-—features that you will find
very useful by the end of the
course.

EXERCISE 3-1
Note: Some of the waterial needed
to answer the following questiuns is

only covered fin the lecture.

1. What is “abstraction™?
2. Whar is “informotien hidlw™?

3. MName the tws parts of a jrogran
unit.

4. Types and obdi=cts are Jeclaved
{n the part of a
program unlt body.

5. What is a package?

6. How do flencric program unizs aid
in reusability?

* ERAMPLE 3~1
e 133334433444 333 3334220332334 35 3083304233000 3023 0382204223842

l.-z . x
«=X Abstract: This program computes the area of a triangle. It first X
w-X prompts you for the length of the base and the height of 2
+ =2 the triangle, then prints out the area. H
u--z :
-=% Author: John Due X
-2 “
==2 Date: 19 Ocr 87 %
-=X x
L 33 $ 4443 34 #4432 TFFA T HHRERIRAGH A4S 3 FFFSF 2T T 33T HE 24 EP LTI FNT PP RA

with TEXT_IO0;
proccduto COMPUTE_AREA_OF_TRIANGLE is

MAXTMUM_LENCTH : conttant 1= 30;
ONE_FALF : constant := 0.5;
MAXIMUM _AREA-: con stan: t= ONE_KALF *
(MANIMUM_LENGTH * MAXIMUM_LENSTH);

type LENGTH_TYPE 4s range 0 .. MAXIMUM_LENGTH;

type AREA _TYPE is digits 1C range C.0 .. MAXIMUM AREA;

Lan T OF_BASE Li SSTH_TYSZ = Q5

KEIGHT : E:STF TYFE 1= 0,
AREA H c‘.:\:‘ o\s - Had G-r;
ANSWER i CHARACTER = 'Y';

package AREA 10 is nev TEXT_U0.FLOAT_IO(AREA_TYPE);
ackage L‘\n‘h I 43 nev TFVT 13. !hTL:'? IO(LEVSTR TYPL)3

- 4

{Continaed on naxs nane)

begin == COMPUTE_AREA_OF_TRIANGLE

loop
.4:.‘" TEXT_Y0.PUT_LINKE("TRis progran ealeulates the atea of a");
. TEXT_I0. PULLINE(" €T jangle given the length of it base™):

TEXT_I2.PUT_LINE(" acd its height.®);

: .
TERA LiNEld)

Thal 10 AT

TEXT_IC.PUTC"ENTE: THE LENGCTH OF TMF BASE (MUST AE AN INTECER BETWE
LENGTH_TO.PUT(LENGCTE_TYPE'FIRST);
TEXT_IO.PUT(" AND"):

- LENGTH_10.PUT(LENGTH_TYPE'LAST)

. TEXT_10.PUT": *);
LENGTH_IC.GET(LENGTH_OF_BASE);

- TEXT_10.PUT("FNTER THL HEYGHT (MUST BE AN INTEGER BETWHEN");
LENGTH I7.PUT{ LENCTH_TYPZ'FIRST);
TEUT_ICLRUTY ANIT);,
LENETH_IS.PUTL LENGTH_TVDE'LAST),
TEXT_IJ.PUTI™: “);
LENGTH_10.GET{ HEIGKT);
AREA = 0

NI_HALF * AREA_TYPE(LENGTH_OF_BASE) * ARZA_TYFE(HIIGHT);
TEXT_I0.NEW_LINE;

TE\T 10 PUT("THE AREA OF THE TRYANGLE 1S8:)
ARV " UTL ALEA)

TENT _10.K&w _LINL;
¢ Ta(T “10. PUI(£ YOU WANT TO TRY ANOTHER? (Y OR N3™),
o : TEXT_10.GET(ANSWER); *
exit when ANSWER = 'N' or ANSWER = 'n';
end loop;

et COMPUTE A¥zd OF (e {aANULE;
- -

3-%

l.
2.
3.
4o
Se
6.

-2
==X
o 4
-
-2
-3
-2
-2

EXERCISE 3-2

Log on to the computer with your correct user nane.

Enter the program below using the editor,

Compile using the Ads compiler,

Make any corrections needed to fix errors.

Run your program.

When you have finished, call the instructor to evaluate your prograz.

=ZZXXXXTIZZXLXIRXXIZIZZZXXXIRIZXIXZIXZZXXIXXXXXAXXIXXXXZXLZRZIXRRXXLXIXZNRANL

Abstract: This program computes all of the prime nuabdbers up to some
value MAXIMUM NUMBERRS.

Author: John Doe

Date: 18 Sep 87

" 20 2T DC 20 2

I LE .

e 3373383333333 8383733344393232333958443333%4338358%33334334833238%%%43431

with TEXT_l0;
procedure SIEVE is

MAXIMUM_NUMBERS : coustant := 300;

type NUMBER_TYPE is range 1 .. (MAXIMUM_MUMBERS + MAXIMUM_NUMBERS/2);
subtype PRIHE RANGE is NUMBER_TYPE vange 1..MAXIMUM NUHIER.
type BOOLEAN ARRAY TYPL 1s Ittly (PRIME_RANGE) of BOOLEAN;

NUMBER
PRIMES

NUMBER_TYPE tu NUNBER ,_TYPE'FIRST;
IOOLEAL ARRAY TYPE := " (others => TRUE) ;

.
.
®
.

package INT_I0 is new Tex™ 10, INTEGER_10 (uuuuu_nn);

begin

for COUNTER 1n NUMHER_TYPE runge 2..PRIMES'LAST / 2 loop
NUMBER := COUNTER + COUNTER:
while NUMBER <= PRIMES'LAST and PRIMES (COUNTER) loop
PRIMES (NUMBER) := FALSE;
iabists o= switBiih v Wwbiva i,
end loop; -~ while NUM
end loop; -~ for CUOUNTER

TEXT_10.PUT (“The prime numbers from | to "):
INT T0.PUT (PRIMES' LAST).
TEXT 10. PUT_LINE (" are:");
for INDEX i8 PRIMES'RANGE loop

4f PRIMES (INDEX) then

INT_10.PUT (INDEX):

end 1f;
end loop; == for INDRX
TEXT_I10.NEW_LINE;

end SIEVE;

3=6

ry

“»

Chapter 4

& RASIC Ada TYPES

OLJRCTIVE C e : . objects of that type. Also, we

') can't fmplicitly mix objects of dif-

Given a simple program speci- ferent types. Ada supplies soue

- * fication, an incomplete Ads program, predefined types such as INTEGER,

student {natructional materials, and CHARACTER, and FLOAT, but more lm-

student notes, - add the corrvect portantly, it gives us the capabil-

.- """ 7 " typas=objects to ‘the program to cor- .- ity. to declare new data types to
to- - rectly implement the problem. Pro- model our own abstractions.

R gram wust confora to course softvare
AR engineering standards. Instructor Type Declaratious

may provide up to J assists.

R e a e er meeee ~Pype and object declarations
can be declared in the declartative

INTRODUCTION part of any program unit:
- What purpose does it serve to procedure MAIN is
gay that a variable is of s certain - Declarative part
type, or class of objects? First,
it tells the coupiler how to treat a type AIRCRAFT is (Bl ,B52,Fl16);
series of bics. For example, adding
twvo integers is different from add- begin
ing two floating point numbers. null;
end MAIN;
- = .- But data typing helps software ‘
engineers also. It asllows them to In the above example, the type
. J...- . . gssign logical properties to an ob- declaration begins with:
e 4008—40--808¢] thezsalouorlid.This. — g o e
S data abstraction csn greatly in- type AIRCRAFT 48 «... -
crease the understandability of a
program, For example, if we need to ALL new type declarations begin this
keep track of the days of the week, way, with the word 'type' followed
it {s nuch more understandable to by the type name followed by the
refer to the days as MONDAY, TUES- word 'is'., Whatever comes after the
. DAY, WEDNESDAY, etc. as opposed to word 'is' defines what class of type
- nunbers frow 1 to 7 {ui wes It O to wt are deelaring.
6?).
Object Declarations
INFORMATION
K ’ The above type declaration
) STRONG TYPING only defines the characteristics for
_ : objects of that type--the set of
In the last chapter, we de- values (Bl, 852, Fi6) end a set of
. fined strong typing to mean that oparations. 1In ordar to get any use
every object has an associsted type; from a type declaration, we need to
this type defines the set of values declare an object of that type:

and set of operstions available for

procedure MAIN i
=~ Daclarative part

type AIRCRAFT is (B1,B352,F16);
PLANE : AIRCRAFT;

begin
null;
end MAIN;

Nov we have an object called PLANE
vhose value can be Bl, B32, or Plé.
The operations we can perfora om
PLANE ars those availasble for the
class of enumeration types which
we'll discuss in class.

~ The types wa can declare in
Ada fall into one of the following
classes:. scalar, composite, access,
private, or task.

Scalar Types

The objects of a scalar type
only contain one value at a time.
Type AIRCRAFT in the previous ex-

ample is a scalar type because at
" any point in time PLANE can contain
only one of the values B!, B52 or
Fi16.

We can break the class of sca-
lar types into integer, enumera-
tion, floating point, and fixed
point types, which we'll cover dur-
ing class.

Composite Typas

Unlike objects of & scalar
type that can only contain one val-
ue, objects of a composite type can
contain collections of valuss. Cow
posite types can be arrays, where
all of the components in the col-
lection are of the same type, and
records, whare the components can be
of different types.

=2

Othar Types

The other kinds of types we
can declare in Ada are:

o0 Access Types: The objects are
pointers to other objects.

o Private Types!{ The operations
on objects of the type are only

thcee that are explicitly
stated.
o Task Types: The objects define

a parallal process.

The strong typing rules in Ada
require that every object be asso-
ciated with a typae The type de-
fines the set of values and the set
of operations available to the ob-
jects of the type. Ada allows you
to declavre your own types to set up
sbstractions of the real world and
maky the solution more understand-
able.

EXERCISE A-!

Note: Some of the satarial needed

to answer the following questions is

only covered in the lecture.

l. Define strong typing.

2. The two kinda of composite types
are snd v

3. A type defines a set of
and a set of e

4. What is the difference between a
constrained and an unconstrained
array?

S« An array 1s a collection of

objects while a
trecord i3 a collection of
objects.

1
m ;
‘o'

EXERCISE 4-2

1 Add the type and cbject declarations that ste called for in the folloving
progran shell:

procadure BUY_A_USED_CAR is

== Declare sn integer typs called YEARS that ranges from 1900 to 2500.

= Dsclare a typs named CAR_MAKES that contains the values DODGE, PORD,
PONTIAC, P, o MERCURY, and CHEVY.

== Declare 2 type named COLORS that has the values RED, SILVER, BLUE, BLACK,’

and YELLOW.

== Declare & record type called CARS with the following components: YEAR of
typa YEARS, COLOR of type COLORS, and MAKE of type CAR_MAKES.

=~ Declare an urray type nased USED CAR_LOTS that can contain 50 elements of
type CARS.

== Declare an object named DANS_USED CARS of the type USED_CAR_LOTS.

bagin
mull;
end BUY_A _USED CAR;

=3

EXAPLE 4-)

==ZTI2TXXXTTIXXZTZXXZITIZTZAXXITIZZTXIALELTIZR XXX XXX LXXXLXITITRTIRTIRXIXRLLLXL

-3 2
==X Abstract: This Frogrsc computes the average of studant's test 4
-3 scores for an enti:: class. Each atudent has three test X
=X scoras and the number of students is given by the number 2 1
-3 declaration. The avercge is the total average of all X E
e $ testa by all students. X
-2 X 1
==l Author: Max Programmer 4 :
-3 2
% Date: 19 oct ¥7 X
L 3 t . o
B 44+ 3333334834943 040330330349390304439303303344843450303305835420384544 !
wvith TEXT 10; . ‘

procedure AVERAGE_SCORES is
MAX_SCORE $ constant := 100,0;

NUMBER_OF_STUDENTS : constant te 10;
NUMBER_OF TESTS : constant t= 3,0;

type TEST_SCORE_TYFE 13 digits 5 rsnge 0.0 .. MAX_SCORE;
type STUDENT_TYPE is range | .. NUMBER_OF_STUDENTS;

type SCORES_RECORD 1s @ |
record)
PIRST_TEST : TEST_CCORE_TYPE; .
SECOND_TRST : TRST SCORE_TYPE;
THIRD_TEST : TEST_SCORE_TYPE;
end record;
type SCORE_LIST TYPE is aruyi' STUDENT_TYPE) of SCORES_RECORD;
SCORES : SCORE_LIST TYPE := (otbyrs => (0.0, 0.0, 0.0));
INDIVIDUAL_AVERAGE,
TOTAL_AVERAGE : TEST_SCORE_TYPE := 0.0;
package STUDENT 10 is nev TEXT_I0.INTEGER_10(STUDENT_TYPE);
package SCORE_IT 1 mew TEXT_ID.FLOAT_X0(TEST_Scoas Tyex); ..
- | (Continued on next page)
A=

bagin =~ AVERAGE SCORES
for STUDENT in SCORES'RANGE loop — GCat test dats

TEXT_10.PUT(“STUDENT MUMBER: “);
STUDENT_10.PUT(STUDENT);
TEXT_I0.NEW_LINE(2);

TEXT_10.PUT("PIRST TEST SCORE: ");
8CORE_10.GCET(SCORES(STUDENT).PIRST_TEST);
TEXT_10.PUT("SECOND TEST SCORE: “);
SCORE_10.GET(SCORES(STUDENT).SECOND_TEST);
TEXT_10.PUT(“"THIRD TEST SCORE: *);
SCORE_I10.GET(SCORES(STUDENT).THIRD TEST);
TEXT_T0.MEV_LINE(3);

end loop;
for STUDENT in SCORES'RANGE loop ~= Compute sverage

INDIVIDUAL_AVERAGE := SCORES(STUDENT).FIRST_TEST/NUMBER_OF_TESTS +
SOORBS(STUD!NT)JBCOND TEST/NUMBER_OF, TB9T$ * .
SCORES(STUDENT) . THIRD T!S'l.‘/ NUMBER_¢ OF TESTS;

TOTAL_AVERAGE = TOTAL AVEMG! + INDIVIDUAL . _AVERAGE/

‘l'lST SCORE ﬂPl(SCOI!S'm).

TEXT IO.PU'I'(STUDENT NUMBER: ");

STUDENT, > _I0.PUT(STUDENT);

TEXT IO.PUT('AV!MG! 1S: ");

SCORE. , _10.PUT(INDIVIDUAL AVM).

_. TEXT_TO.NEW_LINE(2);
1
e end loop;
TEXT_10.PUT("CLASS AVERAGE IS *); . == Print average

SCORE , 10.PUT(TOTAL_AVERAGE);
TEXT_. IO.NBU LINE;

end AVERAGE_SCORES;

Chspter 5
CONTROL STRUCTURE®

Given s program specifica-
tion, an dncomplete Ada program,
student instructional materials, and
student notes, use the appropriate
control structurss to corrvectly iw~
plement the probles. Progras must
conform to course softwvare engineer—-
ing standards. Instructor may pro-
vide up to 2 assists.

Control structures , or state-
ments, define the fiow of control in
the executable part of our program
units. These define the steps the
program unit goes through to get ite
job done. Of all the control struc-
tures availasble, ve can break theas
up into three genaral categories:
sequential, conditional, and itera-
tive,

SEQUENTIAL CONTROL STRUCTURRS

Sequential statements ars per~
formed one aftar another. Three
sequential statements that we'll
talk about in cless are the assign-
sent, null, and block statements.

The escsignment statement simply
assigns a value to &n object. It
sounds simple, but there's a cateh:
the objects on both smides of the
assignment statement have to be the
same typa. (Ranember satrong typ-
ing?)

The null statement does nothing.
Just like a page that says "THIS
PAGE INTENTIONALLY LEFT BLANK®, a
null acatesent can add tc the read-

5-1

ability of a program. 1lt's useful
in structures such as s case state-
ment where you want to do nothing
for a specific path of comtrol.

The block statement is much more
exciting. It asllows us to localize
declaraticns, kind of like creating:
a little declarative part within “he
sequence of stacements of our exe-
cutable part. The block statement-
also lets us localize the handling
of certain conditions that occur
during the program's execution, as
we'll see in a later unit on excep-
tions.

CONDITIONAL CONTROL STRUCTURES

There are two kinds of condi-
tional control structures: the {f
statement and the case sgtatement.
Both of these statcments branch to a
sequence of statements based on the
value of gome condition.

The 1if statement bdranches on s
booican (TRUE or PALSE) condition,
1f the condition is true, the en~
closed statements will be executed.

1f STOP_LIGHT = RED then
STOP;
WAIT:
Go;

end if;

The {f statement can also have an
‘else’ and/or ‘elsif® part to fur-
ther define the flow of control, as
we'll see in class.

The case atatement bdranches
based upon the value of soms dig-
crete object. Instead of having
Just two alternatives, as with the
1if statement, the case statement can
branch to a nuaber of places basad

e,

on the value of that discrete ob-
Ject.

type LIGHT is (RED, YELLOW, GREXN);
STOP_LIGHT : LIGHT := GREEN;

KEEP_GOING;
OBX _GAS;
vhan RED =)
SToP;
WAIT;
Qo;
vhen YELLOW =>
GD_PASTER;
ex case;

ITERATIVE CONTROL STRUCTURES

Iterative control structures, or
loops, are all based on one struc-
ture in Ada: the basic loop. This
loop is structured to loop forewver.

loop
00_SOMETHING;
DO SOMETHING ELSE;
=If you wmt to exit from the loop:
exit;
end loop;

We can exit from this basic loop
only through an exit statcment, as
shownm above.

We can change the characteris-
tics of the loop by adding an itera-
tion scheme. A 'for' loop goes
through the loop once for every val-
ue in a given range.

for INDEX in 1..10 loop
PUT_LINE("Hello!");
end loop;

This for loop would print “Hello!"
ten times. A 'for' loop should be
used whenever you know how many
times you want to go through the
loop.

A ‘while' loop lets
through the loo- while some
tion is true.

you go
condi-

while STATUS = RUNNING loop
CHECK_TEMPERATURE; -
CHECK_FUEL_FLUW;

end loop;

This loop would execute until STATUS
is no longer equal to RUNNING.

SUMMARY

Ada, like other languages, pro-
vides the threc classical kinds of
control structures: sequential, con-
ditional, and iterative, With these
clagsses of statements, all algo-
rithms can be written,

EXERCISE 3-1

l. Complete the following subprogram.

e 118533 4323853348308833395834334443434823344999333309333434333403343324543

-3

==X Abstrsct: Thia exercise vequires you to entsr the code to perform
=g the sctions described in the comments below.

o

==X Author: Max Programmer

-3

«=% Date: 19 Oct 87

-3

e 3133334333333 334383 3358339307338 883 9483334379334 449833439933344334448+4

with TEXT_0;
procedure CONTROL_YOURSELF is

MAX_NUMBERS : comstamt := 300;

type NUMBERS is range O..MAX NUMBERS;

type COLORS is (RED, WHITE, BLUE, GREEN);
type ARRAY_TYPE is array (COLORS) of NUMBERS;

MY_ARR : ARRAY_TYPE := (2,46,12,38);
TOTAL : NUMBERS := 0;

package NUM_10 is mew TEXT_IO. INTEG!R_IO(NUMBERS);
bagin ~= CONTROL_YOURSELF
== Add the components of the array togethur and put the result {n TOTAL
w= 1f TOTAL is batwesn | and 50 then add 5 to the TOTAL
== 1f TOTAL is betwasn 51 and 200 then add 10 to the TOTAL
o= 1f TOTAL is between 250 and 300 then subtract 10 from the TOTAL
== If TOTAL is snything else then set TOTAL to sero
== Print out the result

end CONTROL_YOURSELF;

X
2
X
3

2
2
X
3
2

e e i Ak

Chapter &
SUBPROGRANS

Civen & program spacifica-
tion, astudent instructional materi-
als, and student notes, use subpro~
grams to correctly implesant the
problea. Program must conform to
course eoftwars engloeering stan-
dards. Instructor may provide up to
3 assists.

Subprograms are the prisary
neans of defining abstract actions
that take place in our systam, For
example, when we call the addition
routine to add two numbers, we don't
concern ourselves with cthe steps
that take place to add the numberes—
only that the result is correct.
The same applies to routines that we
design: someone who uses that rou-
tine can concentrate on what the
function doas rtather than how {t
wvorks.,

Subprograms aid our design ef-
fort in that we can break up the
large system into smaller, mors un-
derstandable pieces and use subpro-
grams to implement somwe of the
pieces.

INFORMATION

There are two forms of subpro-
grams in Ada: procedures and func-
tions. Procedures are used to in~
voke some action, while functions
sre used to compute a value.

Both proceduras and functions
have two parts:t the specification
wvhich tells WHAT the subprogras
does, and the body that tells HOW

6=~1

the subprogran is implemented.
Specification:
procadure PRINT MY NAYE;
Body:

with TEXT 10; - To gain access to
= Input/Output routines
procadure PRINT_MY MAE is
= Daclarative Part
begin
== Dwcutable Part
TEXT_I0PUT("Joe");
ed PRINT MY NAME;

As shown above, the body is also
divided into two parts: the declar-
astive part wvhere we can declare lo-
cal types, variables, or program
units; and tha executable part whare
ve define the steps to be axscuted
vhen the procedure is called.

1f wa had a program that needed
this routine, we could call it from
that program:

with PRINT MY

L

With the previous procsdure, we
couldn't tall i1t which name ¢o
print~—=1it would alwvays print “Joe“.
In order to communicate with this
procedure, we need to set up pareme~
ters to pass data to it:

procadure PRINT MY NAME(NAME : in STRING);

Nov when we call the procedure, we
must also pass a value to it of type
STRING to match this parameter NAME.
The body would look like:

with TEXT_I0;
procedure PRINT MY NAME(NAE : in
' SIRIXG) is
begin
TEXT_10.PUN(NAE);

od PRINT_ MY NAE;

To call this procedurs from our main
program:

with PRINT_ MY NAME;
procsdure MAIN is

begin ~— MAIN
PRINT MY RAE("Joe");
PRINT MY_NAE("Sally");
and MAIN;

In class you'll see the differ~
ent modes allowed for paramsters to
pass data into or out froa a subpro-
gran.

As ve said earlier, a procedure
performs some abstract action, while
a function computes a value. We
reflect this in the syntax by adding
a 'return' clause to the end of the
specification indicating the type of
value returned:

function DOUBLE (NUMBER : INTEGER)
retum INTEGER;

When we call this function, it will

return the computed value to the

point where it was called. There~-

fore, we can only call a function as

part of an expression. We can keep

track of the result by assigning **
to a variable:

62

with DOURLE;
procedure DIVEE IT is

BESULT : INTEGER;

begin — DOUBLE IT
RESULT = DOUBLE(S);
= RESULT has & value of 10.
end DOUBLE IT;

STUARY

Subprograms provide s tool for
defining functional abstractions of
our system. Like other program
units, we can separate the WHAT
(Specification) from the HOW (Body).
Ada gives us two forms of subpro-
grans, procedures and functions to
represent actions or calculations.

EXERCISE 6-1

Note: Some of the msterial needed
to ansver the following questions is
only coverad in the lecture. -

l« What are the three nmnodes for
procedure parameters?

2. The only mode allowed for func-
tion parameaters is .

3. Define:
a., Actual Parameters

b. Formal Parameters

4. How do subprograms support ab-
straction?

5. HWow do subprograms support wodu-
larity?

EXERCISE €-2

l« Rewrite the subprograa below into one main subprogram and three smbedded
subprograss. Use subunits to place the subprograms in a separate file.

2. The main subprogram will simply call the first subprogram to prompt for
and get the name. The second subprogram will count the number of 'S's in the
name. The third sudbprogram will echo the name back to the user.

3. 1In the body of the main program, call the subprograss in the order listed
above to get & name, count the number of 'S's, and print echo back the name
and number of 'S's.

e XXX LT XATLZLIZARZ XL L XXX XXX ZZRE XL XA LTI XX T XL LINX XXX IZRIZRALIXZTLIY
-3) 4
==2 Abstract: This progran reads in a name, counts the number of upper 2

3

-2 case 'S's, and echos back the name as well as the number

-3 of 'S's in the name. 4
—— ‘ 4
=2 Author: Sleepy 2
- 4
==X Date: 14 Jan 76 4
- 2
e XXX XXX XXX XL ZXXXIZTRTZZZIXIXXTXZXRZZZXLXZXZLRIXXZXXXXZZIXXX XXX XX XXRXXXXX Y

with TEXT_10;
procedure ECHO_NAME is

MAX_LENGTR : constant := 80;

subtype LINE_TYPE is STRING(1..MAX_LENGTH);
type NAME_TYPE is record
CHARACTERS : LINE_TYPE;

LENGTH t NATURAL;
end record;

== Make your declarations here
begin .

== Make your subprogras calls herve
end ECHO_NAME;

KZAPLE -1

—izzxxzzzzzzzzzzxxxzzxzxxxuzzxuxzxxxxxxxzzxzxzxxxxxzxxxxuzzzxxzxzznzx:

==% Abstract: This program implemsnts the famous Nu-pty Dumpty
:§ algoritha. §
:: Author: Sncesy §
:§ Date: 1 Sep 80) :
an g X IR XXX XX XXX AT A XXX XAL A XTI IXXITIXT LRI XXX XXX XXX IXXXXZIAZZLXZLXXXX X

procedure MOTHER GOOST is
MAX ZGC HEADEDNESS : constant e 10;
MAXMEN tant := $0;
- : constant : ;

RSES : constent := 50;
type EGG_HEAD is range l..MAX EGC_ WEADDEDNESS; =— Degree of eggheadedness
type MEN is renge |..MAX MEN;
type HORSES 1is range 1..MAX_WORSES;

-_—

HUMPTY_ DUMPTY

: BOC HEAD = 7;
ALL KINGS MEN : MEN™ = 18;
ALLXINGS HORSES : HORSES = 15;

procedure SAT_ON _WALL (PERSON : in out EGG_HEAD);

procedure’ HAD_GREAT_PALL (PERSON : in out EGG_HEAD);

procedure GET_OFF_WALL (PERSON : in out EGG_HEAD);

function CAN_PUT_TOGETHER_AGAIN (PERSON ¢ in EGG_HEAD;
HOW_MANY : An MEN;
HOV MANY : in HORSES)
return BOOLEAN;

~=ZXAZLZXXXXXXXITZIXXLXIAXNXZXXZZXZZXAXXXXXXXTILZX LI ZXZZRXXZXXLXIRTXRX LI

4
-—; Abstract: This subprogram sits a person on a wall. §
—-% Author: Sneezy §
=¥ Date: 1 Sep 80
=} 4 3

3333313303303 a st it attiactathitiitiitistaitiattiatiatinitiiaisaititsy
procedure SAT_ON_WALL (PERSON : in out BOG_WRAD) is
begin - SAT_ON VALL
end SAT_ON WALL;
6=4

@

-uxzmzxzuzuzzz:zzzzmzuuxuzxuzzz:uuzxzxxuzzzuzmxummn

13
—z Abstract: This subprogrsa gives you a great fall, X
-y L 4
-: Author: Dopey %
==X Date: 1 Sep 80 3
-y 4

- XTI I XTI XL TR LRI I XXX XXX T XTI LT R TR XXX LTRTZXIZXXXXXTITRXXXXXTXXX
procedure HAD_GREAT_PALL (PERSOR : in out KGG_WRAD) is
begin = RAD GREAT FALL

end HAD_GREAT_PALL;
--’z‘zzzxxzxzzmzzzxmxuzzzzuzmuzzmzzzzzuzxxxmux:zzzzzxzuzzzzzx

-§ Abstract: This subprograa gets a person off of the wall. :
-3 Author: Sleepy : 3
- b 4
== Date: 2 Sep 80 ;

-3
-zzzzzzzz:xmzmmzzuummzuzzzxxumxwmuzuzzzzzzz
procedure GET_OFF_WALL (PERSON : in out EGG_HEAD) is separate;
—zzzzzzzuzzzzzzxzzzzzzzzxzzxz:uuzuzzxzzuzuuzuzumuzxmz:xuug

—3I Abstract: This function determines if a person can be put back 3
-—§ together, given a number of MEN and HORSES. §
==X Author: Sneezy §
--! Date: 1 Sep 80 2
L 4
—zzzzzzxzzxzzzxzzzzxxzzzzuzzzzzuzxzzzxzzxxzzuzzzzzxzzxz RTLXAIZLTITXLZLZX
* inction CAN_PUT_TOGETHER_AGAIN (PERSON t in EGG_HEAD;
HOW_MANY : in MENT
HOW MANY t in HORSES)

rveturn BOULEAN is separate;
—=22ITAXILAXTIXXTXLIIIZTIZL MOTHER GOOSE XXXXTIXTIXIXZIXXXXXXXIIZIIXITIIIXL
begin ~- MOTHER_GOOSE
SAT ON WALL (MUMPTY DUMPTY :
 1f Tan_PUT_TOGETMER 'nl(mm. ALL_KINGS_MEN,

ALL_KINGS_HOESES) thien
GET_OFF_WALL (HUMPTY DUMPTY);
end 1f;

end MOTHER_GOOSE;

6-5

Chapter 7
PALRAGRS

OBJECTIVE

GCiven a program specification,
student instructional materials, and
student notes, use packages to cor=
rectly iwplement the probles. Pro=-
graa aust conform to courss software
engineering standards. Instructor
may provide up to 3 assists.

A packaga is one of the wost
poverful tools in the Ada language.
It allows us to define a more mean-
ingful structure to our software. A
_package is defined as s collection
of logically related entities, such
as types or subprogrems. This tool
allows us to directly implement
principles of software engineeving
such as wmodularity, localization,
abstraction and information hiding.

A package is like the other
program units in that it consists of
a specification and a body. The
specification gives the logical view
of WHAT is in the package while the
body defines HOW these featutes are
implemented. This separation of
specification and body (the WHAT
from the HOW) is the Kkey to engi-
neering understandable and aaintain-
able code.

SPRECIFICATION
The specification of s package

may be plsced in its own file and
compiled all by icself. Inside the
spacification we declare the types
snd program unic specifications of
the entities we want to export to
other prograss. '

e TELEVISION SETS;

In this package, we are modeling a
television, Our TV is defined as
having a TV_STATUS and a current
TV_CHANNEL. What can we do with
this TV? We can turn it on, turn it
off, or change the channel. In this
single package, we have defined our
logical view of a talevision set.
The package allows us to implement
object abstraction by grouping the
type TV and all of its aperations
together in ons package.

¥e can nov use this TV model in
programs we way write:

7-1 .O

.

with TELEVISION SETS;
procedure LOCK TOR_YPOKTS 18

MY_SONY : TELEVISION SETS.TV;

prooadure WATCH TV is ssparate;
function IS SPORTS retutn BOOLEAN
is saparats;

begin — LOOK PR _SPOKIS

while not IS SPOKTS loop
TELEVISION SETS.NEXT_CHANNEL(MY_SONY);
end loop;

WATCH_TV;
end LOOK_FOR_SPORIS;

The Zirst line of our program is a
“"context clause”. It gives us ac-
cess to everything that is declared
in the package aspecification. No-
tice hov everywhere we refer to any-
thing out of the package, we preface
it with the name of the package:

MY_SONY : TRLEVISION SETS.TV;

This helps out the msintenance pro-
grammer locate where type TV is lo-
cated,

The specification gave us the
logical view of what was in the
package. The body defines the im=
pleaentation details of what is de=-
clared in the package specification,

When a main program uses a
package, it only has access to
things declared in the package
specification. Therefore, anyzhing
defined in the package body that
isn't declared in the specification
is hidden from tha main prograa.
This concept directly imwplements the
principle of information hiding.
This tends to mnake programs more
modifiable because changes to the

implenentation details (body) won't
affect other programs, as long as
the interfare (specification) re-
mains the samu.

package body TELEVISION SETS 1s
procadure TURN ON(SET : {n aut V) is

. begin = TURN ON

SETVTV_STARS = ON;
end TURN ON;

procedure TURN OFF(SET : in out TV) is

begin = TURN OFF
SET.IV_STATUS := OFF;
ed TURN OFF;

procedure SET CHANNEL(SET : in out 1TV
0 : in HANEL) is

begin — SET OHANNL
SET.TV_OWNNEL := T;
erd SET CHANNFL;

procedure NEXT CHANNEL
(SET : inouwt TV) is

begin — NEXT.CWANEL
SET.TV_OMWNEL = SET.TV_CIANEEL + 1;
end NECT CWNNEL;

end TELEVISION_ SETS;

PRIVATE TYPRS

lf we look back at our package
specification, you'll notice that
programs that ust this package have
access to the details of type TV.
In many cases we may not want this.
To support the principle of informs=-
tion hiding, we would like the abil-~
ity to hide the implementcation. of
this type as well. Ada allows us to
hide these details through the use
of a private type:

pociugs TELAVISION SUIS is
‘”m‘lﬂ.anm
type IV is Limited privete;

in GIWEL);
prossdhure NEXT_ CMNEILERT 1 in ot TV);
privets
typa STAIUS is (N, OFP)}
tym TV 13
reoord

TV_SHAUS : STANB 1= OFF;
TV OWNEL | GIANEL 1= 2
end Tecord;

od TRLEVISION SET8;

Now other programs can only access
anything in the VISIBLE part of the
package: that part before the word
private. Oetween the word private
and the end of the package specifi-
cation 10 the private part wvhere we
define the full type declaration,

When another program uses this
package, the only allowed operations
for type TV are those slso defined

in the package specification:
TURN_ON, TURN_OFF, SET_CHANNEL,
NEXT_CHANNEL. He can't even asssign

one object of typa TV to another.

By wmaking typs TV privace, we deny
othet progran units the adility to

access the components of a TV. e ;
be these components may change. 0
be -

80, oOther progran units won't
sffected because they are eotill
forced to manipulate the TV eonly
through the operations listed in the
package specification.

Instde the package body howev~
et, the coder has full aceess to
BVERYINING definad in the epecifica-
tion, 1including private types.
Therefors he can refer to the compo-
nents of objects of ctype T™V. 1In
esssence, our package body would re-
main the same as it was wvhen type TV
wvasn't private.

- SMMARY

Packages are a very powerful
tool that divectly support msny of
the principles of software engineer-
ing. The specification provides ths
abstvact view of the collection of

rasources, whole the bedy hides ¢ *
details of their implemantation, .

can use the psckage ko break up outr °

software system into logically re=
lated, localined coutines. This
added feature allows us to define
waw ctypes of abetraction, esuch as
object abstraction, that aren't
available in languages where a subd~
program is tha primary structuring
tool.

EXERCISE 7-1

l. WModify the following program so that all the constant, type and subprogras
declarations are in & separately compiled package. The main subprogram should
(f-' declare the array object and make calls to the routines in the package.

-§!22!1!!22222222222!222222121222!22!22!;2!!!222228!!2!!22!2!22222!2222222

==% Abstract: This program gets a word from the keyboard, inverts the 2
-3 characters in the word, and prints it back out in its 4
-§ inverted form. §
==X Author: Joe Dynasice §
—; Date: & Jul 85 §
i R 4443449040403 000408 e 88308480434 4444483 039833443 343384344744444453434%%1
: wicth TEXT_10;
. procedure INVERT_ARRAY 1

MAX_NUM : coastaat := 5;

ub:ym“wxm.s is CHAMCTI-:R range Al 2
is range 1..MAX
cyp. CAP"ARR is array (NUM_LTEMS } of CAPITALS;

HORD ¢ CAP_ARR;
proudurc GET_WORD (NEW_WORD : out CAP_ARR) {s
ot INDEX in NEW_WORD'RANGE loop

TEXT I0.PUT(™ INPUT A CAPITAL LETTER ");
Q nx'r'to.cl-:'r NEW_WORD(INDEX));
-l cl:r uour

procedure INVERT WORD (BACK_WORDS : in out CAP_ARR) s
TEMP_WORD : CAP_ARR;

bagin
for INDEX in reverse BACK WORDS'RANGE loop
rl-:nl:r wonn(BACK_WORDS'LAST - INDEX +1) := BACK_WORDS(INDEX);
end
BACK NORDS := TEMP_WORD;
ead INVERT_WORD;

| . procedure PRINT_WORD (FOR_WORD : im CAP_ARR) fs
h‘or INDEX {m FOR WORD'RANGE leo
TEXT_10.PUT(FOR_WORD(INDEX ?);
end loo
end PRINT HORD;
bagia = INVERT_ARRAY

GET WORD(WORD);
INVERT WORD(WORD);
" PRINT_BORD(WOKD);

ead INVERT_ARBAY;

@

14

EXAPIE 7~)]
B 3 3348333933834383835333888444333980389833948348884003483594308b338v84%] .O

- .
== Abstract: This package contains trig functions that work on the

-3 predefined type FLOAT. It contains the traditional trig
-3 functions, arc trig functions, and hyperbolic trig

=3 functions.

g

== Authors: W A WHITAKER APATL BGLIN AF3 FL 32542

=l T C RICHOLTT USAFA

=y

% Date: 16 JULY 1982

-3

==ZZXTXTTXXZTZXXXRRTXTIIRZLZZITIZIRLZIXRRIIIRZLZXTTZTXITXXTXRLXLIITLIXLIXTTXXT

package TRIG_LIB is

function SIN(X : PLOAT) return FLOAT;
function COS(X : FLOAT) return FLOAT;
function TAN(X : FLOAT) return FLOAT;
function COT(X : FLOAY) veturn FLOAT;

function ASIN(X : FLOAT) return FLOAT:
function ACOS(X : FLOAT) return PLOAT;
function ATAN(X : FLOAT) return PLOAT;
function ATAN2(V, U : FLOAT) return FLOAT;

function SINH(X : FLOAT) return FLOAT:
function COSH(X : FLOAT) return PLOAT;
function TANH(X : PLOAT) return PLOAT;

end TRIG_LIB;

3

X
L3
2
2
2
X
X
X
2
X

’t’f b)

-

package body TRIG_LIB is

function SIN(X : PLOAT) return FLOAT is separate;
function COS(X : FLOAT) return FLOAT is separate;
futiction TAN(X : PLOAT) return FLOAT is separate;
function COT(X : FLOAT) return FLOAT {s scparate;
function ASIN(X : FLOAT) return FLOAT is separate;
function ACOS(X : FLOAT) return FLOAT is separste;
function ATAN(X : FLOAT) veturn FLUAT is seperste;
function ATAN2(V, U : PLOAT) return PLOAT is separate;
function SINN(X : FLOAT) return FLOAT is separats;
function COSH(X : FLOAT) return PLOAT is separste;
function TAMH(X : FLOAT) return FLOAT is separate;

end TRIG_LIB;

~=PPRRreaLIeIIILEItIILIIlll PRELIMINARY VERSION 1188800800000 000000000101
=T ZXXTXLXXZRZIZITZRZZZXIAZZXZIXZLZXZRLIAZZZZIZZZRXZIZIXZIIXTXIZZZLIXZZRZIXXLL L

=y p
==2 Abstract: The following routine is coded with reference to the 2
o -2 slgorithms and coeficients given in “Software Manual for X
(N -3 the Elementry Functions” by William J. Cody, Jr. and 2
i X William Waite, Prentice_Hall, 1980. This particular X
-3 version is stripped to Work with FLOAT and INTEGER and]
-l uses 2 mantissa represented as a FLOAT. A more general %
-§ formulation uses MANTISSA TYPE, etc. i
== Authors: W A WHITAKER APATL EGCLIN AFB FL 32542 Z
-§ T C EICHOLTZ USAFA §
-é Date: 16 JULY 1982 . :
e I P8I T 3595474454453 34840445439348389838354383599343343343343449

separate (TRIC LIB)
with CORE PUNCTIONS;
function SIN(X : FLOAT) return FLOAT is

Cl : constant FLOAT :» 3.160623

c2 : constant FLOAT := 9.6765_ 33897 93E-4;

SGN, Y : FLOAT;

N :+ INTECER; -
XN s FLOAT;

7, G

xi, 2 : FLoAT;

RESULT : FLOAT;

YMAX + FLOAT :» FLOAT(INTEGER(CORE FUNCTIONS.PI *

CORE_FUNCT IONS . THO¥* (CORE_FUNCTIONS.1T/2)));
BETA : TLOAT := CORE FUNCTICGNS.CONVEKT rLoA:(coaL ?uncrgog +IBETA);
EPSILON : FLOAT := CORE_YUNCTIONS.BETA ®#=(-TORE_PFUNCTIUNS.IT/2,;
(L‘II' beg o

in - SIN

if X < CORE FUNCTIONS.ZERO then
SGN := ~TORE_PUNCTIONS.ONE;
Y = =X;
else
SGN = CORE_FUNCTIUNS.ONE;
o-x
cnd if;

N := INTEGER(Y * CORE FUNCTIONS.ONE OVER _PI);
XN := CORE_FUNCTIONS,CONVERT_TO_FLOAT(N)T
1f N mod 27 /= 0 then
SGN := «~SCN;
end lf;

X1 := CORE FUNCTIONS.TRUNCATE(abgi{X));

X2 .= abs(X) - x1;

F := ((X) = XN*CL) + X2) ~ xwec2;

1f abs(¥) < CORE_PUNCTIONS. EPSILON thea
BRESULT := F;

@105 .y

na'fgdLT 1= i + PRCORE_FUNCTIONS.R(G);

e

return (SGN * RZSULT);

end SIN;
7=6

EXNME 7-2

-%2212!!2!2!!22228223322121821122!2382222822238!222282828222212222222228!!

-2

Abstract: This package defines a rational number type. The 9
following routines are provided to work with these 3
rationsl numbers: §

NUMERATOR OF -~ Returns the numerator of the number 21
DENOMINATOR_OF ~ Returns the denominstor of the number 2
MAKE = Makes & rational number from integers %
" = AMds rationsl numbers X
"= - Subtracts rationsl numbers 2
a" = Multiplies rational nuabers 2
/" « Divides rstionsl numbers 4
DISPLAY - Displays & rational number to tcrntnali
Author: Nua Burrs §

Date: 23 Nov 85

e 1333444354333 8834433345538539833433353434354283453525243534 724435432 54434

package RATIONAL_NUMBERS 1s

MAX_VALUES : coanstant (= INTEGER'LAST;

typa VALUES is range -MAX VALUES .. MAX VYALUES;
subtype POSITIVE VALUES {9 VALUES range 1 .. MAX _VALUES;

type NUMBER _TYPE is private;

2
p
2

function NUMERATOR OF(A_NUMBER : NUMBER_TYPE) return POSITIVE_VALUES;

function DENOMINATOR_OF (A_NUMBER : NUMBER TYPE) return VALUES;

function MaXE (TOP t VALUES;
BOTTOM : POSITIVE_VALUES) return NUMSER_TYPE;

function "+" (LEFT, RIGHT : NUMBER_TYPE) return NUMBER_TYPE;
function “=" (LEFT, RIGHT : NUMBER TYPE) return NUMBER_TYPE;
function "*" (LEFT, RIGHT : NUMBER_TYPE) return NUMBER_TYPE;
function “/" (LEFT, RIGHT : NUMBER TYPE) return NUMBER TYPE;
procedure DISPLAY (A_NUMBER : NUMBER_TYPE);

privacte

end

type NUMBEE_TYPE 1s
record
NUMERATOR ¢ VALUES
DENOMINATOR ! rosrm}'z VALUES;
end record:

RATIONAL_NUMBERS;
1-7

vith TELT_10;
package lody RATIONAL NUMBERS is

package VALUE_IO is new TEXT_10.INTEGER_I0(VALUES);

B L8 e e T E s e e e et 28 ey 0008800000032 ss0200802 0300 tetsttotttty
-2

4
-=X Abstract: This function returns the numerastor of the rational 4
==y number. 4
-2 ' 4
=% Author: Num Burrs 2
—-: Date: 25 Nov 85 :
R 444344444444 43 443443843443 333338 43R4 3444433443378 34493438434493558349474%

function NUMERATOR OF (A NUMBER : NUMBER_TYPE) return POSITIVE VALUES is

begin == NUMERATOR_OF
return A_NUMBER.NUMERATOR;
end NUMERATOR_OF;

A L31137343243444344337398843440 4008000 998840aaatbTbesatsstsattissesssdis:
-2

%
-=1 Abstract: This functicn returns the denominator of the rational 4
-3 number. 2
-2 4
-~% Author: Nua durrs 2
-=% Date: 25 Nov 85 b 4
-=X %
L A X I LT LR L AR A AR LRI Z LA LI RX XA AR AT LINXXZX XX

function DENOMINATOR OF (A_NUMBER : NUMBER_TYPE) return VALUES is
bagin — DENOMINATOR_OF

return A_NUMBER.DENOMINATOR;
end DENOMINATOR OF;

~ XA XRAX LRI RANAAXA R RAR AR LR RARRIN XX RRAN AR KRR AR XXX LXXARZAXRLAXNLZAAZLLLRLZRL

-=2 %
~-% Abstract: This function takes a VALUES and a POSITIVE VALUES and %
-2 creates a rational number out of them. b4
-2 Z
=~Z Author: Num Burrs . %
-=% Date: 25 Nov 85 4
-2 2
S Y 395343 3538995442025 53 7339444402093 27 4357448022839 4393894878427733354 400

function MAKE (TOP 3 VALUES;

BOTTOM : POSITIVE VALUES) return NUMBER TYPE is
begin -~~ MAKE

return (TOP, BOTTOM);
end MAKE;

1-¢

-l!!!!!!l!!tl!22!Z22122221222!222!!ZZZIZ:ZXZX!!!Z!!!!!!I!8!2282!22!!22!2!:

=% Abstract: This function adds twec rational numbers.
«=% Author: Num Burrs 4

- 25 Nov 83 2
-§zxE§§§ixzzzzzzzzzz§zzzzzzzzzzzzzzzzzzzzzzzzzxxxzzzzzzzzzzzzgzzzzzzzzzzzx

unction 'g;_(nzrr s RIGHT : NUMBER_TYPE) return NUMBER_TYPE is

8
return ((L!?T.N?HBIATOR * RIGHT. UENOHINATOR)
RIGHT.NUMERATOR * LEFT.DENOMINATOR),
od LEFT.DENOMINATOR * RIGHT.DENOMINATOR);
e -+u;

e Pt YA 444533584348 r e840 53 0834448400088 04444438833800484834838434544441
o= Abstract: This function subtracts rational numbders. X
== Author: Mua Burrs 4

-3 Date: 25 Nov 85 b4
-1822322322322!!!28222822!121!2222!!2222!2222!!!!!!!2!!222!!22!222222!!!!1

function "~" (LEFT , RICHT : NUMBER _TYPE) return NUMBER TYPE is
begin = “-"

dteturn LEFT + (=RIGHT.NUMERATOR,RIGHT.DENOMINATOR);
end “=";

-—zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzxzxzxzzzzzzzzxzzzzzzzzzxzzzzzzzzzzzzzzzzzzz
==X Abstract: This function lulttpltcs rational nuabers.

== Author: Num Burrs z
«=1 Date: 5 Nov 85 4
e 3133434344949 45443478594 5953334333434 98 494333344444 333448034424985548344]

g:ngtion '*: (LEFT , RIGHT : NUMBER_TYPE) return NUMBER_TYPE is
n aman

gcturn (LEFT.NUMERATOR * RIGHT.NUMERATOR,

eng =a~; LEFT.DENOMINATOR & RIGHT. DENONINATOR) ;

e 3388893459438 4 383937394378 44 4453433843444 033038944403448444484488444
== Abstract: This function divides rational numbers. 3
-§ s::zor' gg- Burrs z

85 2
-zzzzzzzzzzzzzzzzzzzzzzzzxzzzzzzzzzzzzzzzzzzzzzzzxzzzzzzzzzzzzzzzzzzzzzzzz

function “/; (LEFT , RIGHT : NUMBER TYPE) return NUMBER TYPE is
begin == “/"
8rcturn (LEFT.NUMERATOR * RIGHT.DENOMINATOR,
/ LEFT.DENOMINATOR * RICGHT.NUMERATOR):
end "/%;

-zzz
==X Abstract: This displays a rational number to the terminal. 4
==X Author: Nus lurto 2

—=2__Date: 25 Nov 85 2
-ZZZZZZZZZZZZZZ!ZZZZSZIZZZZZZ222832122ZZZZZZZZZZ%ZXZZ%ZZZZ!ZZZZZZZ%ZZZZZZZ

rocedure DISPLAY (A_WUMBER : number_type) is
gin == DISPLAY

VALUE_10.PUT(A NUMBER.NUMERATOR);
T2XT Y0.PUT("
VALUE 10.PUTC A WUMBER . DENOMINATOR)
TEXT_To.NEW_LINE;

end DISPLAY;

end RATIONAL _NUMBERS; - body

@

1

Chapter 8

Given a program specification,
student instructional materials, and
student notes, add exceptions to
correctly implement the program.
Program must confora to course soft-
vare engineesring standards. In=-

strtuctor may provide up to 4 as~ .

sists.
INTRODUCTION

When working with embedded com~
puter systems, reliability of our
software is a major concern. Soft-
ware is & vital cosponsnt control-
ling aircraft or missiles whose
failure can have disastrous results.
In order to deal with error condi-
tions, Ada defines something called
an exception. An exception is the
name of a condition that is unusual
(sn error). We can then specify,
via an exception handler, what ac-
tions we want to take when this con-
dition occurs.

INFPORMATION

There are a number of predefined
exceptions in Ada. These are raised
automatically whenever the associat-
ed condition occurs during the exe-
cution of the program. Some exam-
ples ars CONSTRAINT _ERROR (Raised
when a constraint is violated, such
as when you assign a value that is
out of range to a variable), STOR-

- AGE_ERROR (Raised when there is not

snough memory left to continue exe-
cution) or DATA_ERROR (Raised within
TEXT_10 whenever you GET a bad input
value). To define what action
should be taken when these condi-
tions occur, you can define an ex-
ception handler.

BANDLING EXCEPTIONS

When implemented, an exception
handler must be placed at the end of
the sequence of statements ia a
frame. A frame can be thought of as
any begin-end block, such as @
program unit or Dblock statement.
The syntax of an exception handler
1is similar to a case statament and
looks like this:

vith TEXT 10;
prooadure TESTING is

MAX : constant = 1Q0;

type SORES is range 0..MX
MY SCORE : SOORES;

package SCORE_I0 is maw

vhen TEXT_10.0ATA_FROR =>
TEXT_10.FUT(“Invalid encry.” &
® Try again.”);
mcm.mmmo
MY SODKE = MAX;

ad TESTING;

In this example, {f the person en-
tering data st the keyboard enteres a
'b' when asked for a test score, we
have an error condition named by
DATA_ERROR. UWe say that the excep-
tion DATA_ERROR is raised and we go
to the associated exception handler
to find out what action to take. In
this case, the mensage to try again
will be printed.

s Pae,.

Likewise, 1f the multiplication
results in an answer out of the
range for SCORES (above 100), CON-
STRAINT_ERROR will be raised and
MY_SCORE will be assigned MAX.

1f either exception is raised,
once the statements in the exception
handler are finished, control pase~
es out of the frame—you DO NOT re-
t.rn to the point wvhere the excep~
tion was raised. You can be cre~
ative with Dblock statemesnts to
localisze exceptions, as you'll see
in the lecture.

USER DEFINED EXCEPTIONS

The exceptions in the example
above were predefined in the lan-
guage. The Ada compiler inserted
object code into the program to test
for the conditions and raise the
exception. Ads also gives you the
capability to define your own excep—-
tions.

The declaration of an exception
looks a lot like an object declara-
tion. Remember though that an ex-
ception is not an object that we can

asgign a value to,

it just nemes
some condition.

See figure 8-},

Unlike predefined eoxceptions
vhete the code was automatically
inserted to test for the error con-
dicion, user defined exceptions re-
quire the programmer to write the
code to test for the condition and
raise the exception.

Exceptions can be powerful tools
in handling error conditions that
occur during the execution of a pro-
graa. By using exception handlers,
you can write code that will never
quit abnormally, unless a hardware
error kills the wmain processor!
Instead yosu can retry the operation
that caust® the error, try s differ-
ent algoritha, restart the system,
or whatever action is necessary in
those circumstancea. Ada therefore
allows you to build in reliability
by letting the programmer, not the
operating system, decide what action
to take in the event of an error
condition.

with GIVE EXTRA INSTRUCTION;
procedure TESTING s

MAX 1 constant := 100;
PASSING : constant 3« 70;

t SCORES is T e O MAX;
.Kﬁyp. FATLING SCORES is SCORES range 0..PASSING;

: SCORES:
FAILING : exception;

package SCORE 10 is new INTEGER I SCORES);

begin
TEXT 10.PUT("Enter test score: “);
SOORE 1D, MY SOORE

if M30ORE m‘mm
rise PAILDE; =
end if;

whan TEXT 10,DATA =)
TEXT [().Hﬂﬂdld antry.
TEXT 10.PUT("Student failing™);
GIVEEXTRA INSTRUCTION;
end TESTING; = - -
Figure 8-},

Plaase try wiin.”);

User Defined Exceptions
=2

.
b e v Comai o i e sl

l. Modify the following procedure to handle DATA_ERROR conditions. Make it
keep trying to get numbers until it gets two correct aumbers. -

; —:zzzzxzzzzzzzzzmxmzzzx:xuzzxmzzmxzzzuzuzzzuzzxmuzzzxz:zuz
-: Abstract!
‘. == Author:
-3
-2 Date:
-
-zzzzzzzzzzxzxxxzxzxzzzxzxzzzxmxumzzzzzmzxuzzzzzzzzzzzzzzzxxzzzzz ' }

MMINININNMEN

with TEXT_I0;
procedure ADD_NUMBERS is i

MAX_NUMBER : constamt := 1 _000;

type NUMBER TYPL is range O..MAX NUMBER;

' FIRST_NUMBER, ' - |

SECOND) _WUNBER,
TOTAL | WMBER NRGER_TYPE;

Y

JE.:

psckage NUMBER IO is uaw TEXT_10.INTEGER_IO(NUMBER_TYPE);
begin = ADD_NUMBERS

NUMBER_10.GET(PIRST_NUMBER);

NUMBER_10. GET(SECOND_NUMBER) ;

TOTAL_NUMBER := FIRST NUMBER + SECOND_NUMBER;

eod ADD_NUMBERS;

] 8-3
(@ |

e SR O N SOP SO RY £33 U USRI DL A U ST SN

EXAMFIE §-)
R 348334834383 533030384303583803438838380001330380943¢334883saattttitsds

==Y Abstract: This package implements an aircraft auto pilot.
== The package contains procedures to:

- = Gat the current altitude

—§ « Disengage the auto pilot

-"z . :

—z .

-3

==% Author: T. Guan

~~% Date: 22 Jun 88

=3

-—§ Propageted Bxceptions:

-3 INPUT EBRROR = Raised when incorrect altitude read
-3 T00_HIGH_ERROR ~ Raised when altitude too high
--Z T00_!) LOW ERROR = Raised whan altitude too low

—zxzzxzxxxzzzxzzxzzzxzzzzzzzxzzzzzzzxzzzzzzxuzxzzxzzzzzxzxzzxzxzuzxzzzz
package AUTO_PILOT_PACKAGE is

MAX ALTITUDE : comstant := 100 000;
MIN_SAFE_ALTITUDE : comstast := 1_000;
MAX_ m T ALTITUDE : comstast := 000;

type ALTITUDE TYPE is ramge O..MAX ALTITUDE;
subtype TOO_LOW fs ALTITUDE_TYPE ramge 0..MIN _SAFE_ALTITUDE;
subtype TOO_NIGCH is . LTITUDE_TYPE ramge MAX_BAPE_ALTITUDE..MAX ALTITUDE;

procedure GET(ALT : out ALTITUDE TYPE)
procedure DISENGAGE AUTO_PILOT;

other subprogams daclared here

thagse subprogras will test for and
raise exceptions declared beslow whan
and wvhere sppropriate

INPUT ERROR : axception;
TOO_LDW_ERROR : exceptiom;
1‘00 Illcll ERROR : excaptioa;

end AUTO_PTLUT_PACKAGE;
84

4
4
4
4
3
3
3
X

2
X
3
2
3
X
2
b4
3
b4

package body AUTO_PILOT_PACKAGE ie

—:xz:xzzzzzxzzxzzzzzxzzzuxzxxzzzzzxxzxxzxxzzzzzzzzxzxxzzxxxxzxr"xzzxzxzz

-: Abstract: This procedure gets the altitude from the sensor. 2
- 4
==X Author: T. Guunn 2
-_X z
==X Date: 23 Jun 88 2
-3 X
=2 Propagated Exceptions: X
-3 3
-3 INPUT_ERROR = Raised when incorrect altitude read 4
-3 T00_| lucu ERROR -~ Raised when altitude too high X
—: roo Lov_| ERROR = Raised when altitude too low :
O 343383344 3434044444444444444443444334344480800484843333233434289583%4 80

procedure GET (ALT : out ALTITUDE_TYPE) is
TEMP_ALTITUDE : ALTITUDE_TYPE := O;
bagin -- GET

== Code here to get TEMP_ALTITUDE from sensor
== INPUT_ERROR is ratised of incorrect type of data is received

if TEMP_ALTITUDE in TOO_LOW thea
raise 1‘00 LOW_ERROR;
alaif TENP ALTITUDE ia TOO_HIGH then
rales 1'00 HIGH_ERROR;
end 1f;
ALT := TEMP_ALTITUDE;
end GET;

end AUTO_PILOT_PACKAGE;

&-5

=-=% Abstract:

==X Author: 7. Guan
-: Date: 23 Aug 88

This procedure is the asutopilot that flies the aircraft.

-zxxxxxzx:z:mmxzxzzxxzxzmmzxuuu:zzzuxmnzmzzmmmuzg

20 240¢ 20

B Y4444 44444442333 8234488 8880883083333 33eb3tesdsdtetotitresstvsssttytsss
with AUTO_PILOT PACKAGE,TEXT_l0;
procedure |

AUTO_FVILOT 18

MAX_TRIES : cemstast s-' 3
ALTITUDE : AUTO_PILOT_PACKAGE.ALTITUDE TYPE := O;

begin

for 1 ia 1..MAX TRIES leep

begin

MO_P!LOT_PACKAGE.GBT(ALTITUDE);
exic;

exceptiocn

eud

when AUTO_PILOT_PACKAGE.INPUT_ERROR =>

if I=3"thea
ralise;
end Af;
; = Block statement

end loop;

== The meat of AUTO_PILOT will be here

exceptioa

when AUTO_PILOT_PACKAGE.INPUT_ERROR =>

AUTO PILOT.DISENGAGE AUTO PILOT;

‘I'EX‘IPIO.PUT(" bl b UISINEAGING AUTO PILOT %#wén °).
n)'

‘I'EXT_IO. PUT(" ALTIMETER FAILED

when AUTO_PILOT_PACKAGE.TOU_HIGH_ERROR =>

AUTO_PILOT_PACKAGE.DISENGAGE_AUTO_PILOT:

TEXT_10.PUT(" weawd DISENGAGING AUTO PILOT #ttda “).
TEXT_10.PUT(" ALTITUDE TOO HIGH TO USE AUTO PILOT");

whes AUTO_PILOT_PACKAGE.TOO_LOW_ERROR =)

AUTO PILOT PACKAGE.DISENGAGE AUTO PILOT;
TEXT_10.PUT(" #wnan DISENCACING ATTO

- Get the altitude

== Max of three trics

PILOT weese =),

TEXT_10.PUT(" ALTITUDE 700 LOW TO USE AUTO PILOT");
end AUTO_PILUT;

8-6

Chapter 9

l« Given a program spacifica=-

tion, a generic, student ianstruc~

ticnal materials, and student notes,
correctly instantiate a genetic to
solve the problem. Prograa wust
conforam to course softwars enginesr-
ing standards. Instructor may pro~
vide up to 2 assists.

2. Given a progrem spacifica-
tion, a generic declaration, an in-
complete generic body, student in-
structional materials, and student
notes, complete the generic body to
correctly solve the problea. Program
must conform to course software en-
gineering standards. Instructor may
provide up to &4 asssists.

Generics. The mere mantion of
the word makes othervise gallant
programmers tremble. But Ada gener~
ics are nothing to be afraid of.
Once you understand the significance
of etrong typing, the concept of a
gensric program unit is simplified=-
even natural.

A generic program unit simply
makes a subprogram or package wore
genaral @0 we can reuse it in dii-
ferent spplications. In ocder to
nore clearly see why we need gener-
ics, let's imagine tha Ada language
without generic program units.

What if ve took svay the gener-
ic INTEGER_10 package and replaced
1t with & non~generic variety. Af-
ter all, don't we have non-genmeric
packages for input/output of types

CHARACTER and STRING? Why can't we
do the same for input/output of in-
tegers? Let's call our newv package
NEW_TEXT_10 and declate in it a PUT
routine for integers that looks
like thia:

procadure NUT(ITEM : in INIRGER);
If we have an object of type INTE~

GER, we can then call this procedure
to primt it out:

with NEW_TEXT 10;
mmmu

NOMBER : INTEGER := 22;
begin ~ PRINT NUMERS
N TEXT 10.PUTNMBER);
end PRINT NMBERS;
So far, this works fine. But
a8 we want to do wmora in our
PRINT_NUMBERS program, we may have

to print out numbers of different
types: '

with NEW TEXT 10;
procadure PRINT NUMBERS is

type SOORES is range O .. 100;
type LONGTH ia range O .. 3%;

NMAER : INTEGER :» 22;
SCORE : SOORES ™ 80;
SIDE : LDNGH = 25;

begin — PRINT_NMRERS

M TXT_10,FUT({UMIRR); '
(R ur L_I0.FUN(SCOE); ~=Illegall
R 'M' [I0.FUTN(SIDE); —lllegal!

od PRINT NDQMS;

Remeaber our strong typing rules!

These rtules don't allow us to mix
apples and ovanges; or INTRGERe,
SCORES, AND LENGTHs for that matter.
8ince our PUT routine has its ITEM
paranster declared to be of the pre-
defined type INTEGER, we can't pass
it an object of typs SCORES or
LENGTH. Without generics we would
have to declare three PUT procedures
in our NEW_TEXT_IO package:

procadure PUI(ITEM & in INIEGER);
procaduse FUT(ITEM : in SO0NES);
procadure FUNCITIM ¢ in LBOTH);

In fact, every time we declared
new integer typs, and we need to
print out a value of that type, we
would have to declars & new proce-
dure.

This solution obviously is un-
satisfactory. We have thres PUT
procedures that do exasctly the same
thing, yet because of our aetrong
typing rules, all thres wmust be
written, Also, types SCORES and
LENGTH would have to be visible in
package NEW_TEXT_ 10, which would,
when you think about it, result in
forbidding you from declaring new
user defined types that need to be
PUT or GET. Wouldn't it be nice if
we -‘could just take one of thesa PUT
routines and make it general enough
8o that we don't have to rewrite it
two nore times!

GENERIC DECLARATIONS

Well, that's exactly what ge-
neric program units do. When we
compile & generic declaration, we
don't define what type that routine
will work with=—we just define a
template. We define the algorithm,
but leave a 'dummy'’ name in place of
the type nans we vant ths routine to
work withs

genaric
type NM is range O}
procadure PUI(ITEM tln NM);

Here wa've defined a place holder
called NUM to ba the name of the
type of dtem we can pass to this
procedure, VUWe call this place hold-
er A generic formal parameter. Now,
when we nead to print cut an integer
value, we can take this template and
£411 {t 4in by aspecifying what type
we want to take the place of NUM,
We do this through a generic instan~
tiastion.

Once a generic routine is com~
piled, we can make use of that gen~
eral routine in differenct parcs of
our program or even in different
programs. We just have to tell the
compiler what type we want to match
up with the place holder name we de-
fined when we declared cthe generic.
If we again want to print out nua-
bers as in our previous example, we
€an use our generic PUT routine that
ve had defined above, and instanti-
ate ¢t for our types INTEGER,
LENGTH, and SCORES:

with NUT;
procadure PRINT_NUMBERS is

typs SQURES is range O .. 100}
typs UONTIH 4s vango O .. 36;

INTEGER &= 22
SCORES = AU;
LA™ = 25;

o oo oo

—~ Qeric jastamtistions:

prucadure PUT_INTEGERS 1s

nav WUTCINTRGER);
peocadure PUT_SCORES is

new PUT(SCORES) ;

<7Ie,

,f".\

Logically, the generic instan-
tiatfon 4s seimilar to declaring a
brand nev subprograw. The differ-
ence is that we don't have to re-
write any of the algoritha for the
routine. With one line, the instan-

tiacion, we can escape from writing

sany lines of the subprogram body.
STIMARY
Ma's stromg typing rules are

such that you must be very specific
in psssing parameters of the correct
type vhen calling a subprogram. The
tules don't allov you to pass a rou-
tine a SCORFE whea it is looking for
an INTEGER: Generic program units
simply take that subprogram or pack-
age and make it more gensral sc that
ve dor't have to rewrite that plece
of code many timcs.

EXRRCISE 9-1

Civen the following generic function, fill in the main procedure which will
instantiste it, as well as 1/0 for the array component type. It wili then make
a call to the function and pttnc ouc the results.

-zzzzzzzxzzuzzuzuzzzzzzzzuzzzzzzzzzzzzzzzzzzxzzzxzzzzzzzzzzzzzxzxzzzzx

=X

=2 Abstrast:
==X

=% Authos:
== Date:
-3

geseric
type INDEX TYPE 18 (<O);
type INT ™YPE 4s resge <>;
typa m TYPE

function GREATEST VALUE |

ey $ 14 2882588382408 38055083 0205 b It 0853858089808485443838980480534084

2
z
X
X
z
X

is erray (INDEX TYPE) of INT_TYPE;

LIST : ARR_TYPE) retwra INT_TY®E;

femction GREATEST_VALUE (LIST : ARR_TYPE) veturm INT_TYPE i¢

TEMP_INT :
bagin

for 1 ia LIST'RANGE lecp

4f LisT(i) > TRM? INT chea
TIP_INT 1= LIST(I);

ed 1f;

aad Leop;

veturs TEMP_INT;

ond GREATEST_VALUE;

INT_TYPE :~ INT _TYPE'FIRST;

—E R T IR X SRR R L AR KRR R AR R IR R IR LKL AR AL LARLIRTRLLRRATATIZRLTXRNL

— _ :
o 231434043438 483¢33308t335808383438¢84338383¢3433333330303 b eriitdit)

Abstracty

Author!
Date!

with TEXT_10,GREATEST_VALUL;
proasdurs MAIN fo

Declare needad types hace

Make nesded instantiations heve

Declare needed objects here

Pill array and then call function

Print out the results of the funetion

ond MAIN;

20 30 M0 9 @

g]

eall

GRNERIC DODIRS = Geroric Body: ;
function AVERAGE (PINET,
o far we've seen how to in- EOOND | NMBRRS) :
sctantistc a genaric program untt. retut NMIRS is
For the remainder of che chapter, gin
we'll look at writing the bodies of retum (FDWT « MONY) / 2.04 ’
& generic, st AV :

Let's consider s generic fune~

tion thet computes the aversge of

twvo floating point numbers.

loek

it may
Like thim

= Gamaric Gpecifiestion:
generic

typs NI s digite O}
fmction AVBWGE (PINST,
00D 1 NMODS)
returmn KIMBINS

Ved

When instantiated, ve can logically
think of al! (nstancas of our genore
fe pareneter NUMBERS in the body are
repissed by the yps Aam that W
fnstuntiated it with, Remember, our
goneric formal parameter NUMBERS {s
Just o plece holder for the name of
tha type we pann vhen we inatantiate
the generic.

Generic Formul Paramsters

In order ¢o calcuilate che aver~
age of two fleating poiat numbere,

wve had to usc operations such as-

addition and division. While these
are wstural operations for {loating
point types, it mskes no sense at
all to opdd and divide wome other
types, such as type CHARACTER.
There should be soms way wa can pre~
vent this guneric fuamction frnm be-
ing instantiasted for CHARACIRRs to
enforce our limited set of opera-
tions alloved by the type definition
of enumeration types like CHARACTER.
Ads handles this by defining differ-
ant classes of generic foraal type
paraseters.

Ada allows us to sat up geueric
formal psrameters that will match
the following classes of types:

0 All types

0 All but limited private types
o All discrete types

o All integer types

a All flosting point types

0 All fixed point types

0 Array types

0 Access typas

The language also defines generic
formal parameters to pass values,
objects, and even subprogrzms to a
generic. These concepts will be
covered in the lecture.

Generic Formal Type Parameters

A generic formal type parameter
actually defines two things: 1)
The types the zompiler will allow us
to instantiate the generic with and

2) The operacions that can be per-
formed on that type within the body
of the generic program unit.

There's -kind of a trade~off he-
tween the types we allow to match
durirg instuntiation asnd the opera-
tions thst are sllowed in the body
of the gsaneric. The more types we
allov to instantia:e the generic
vith (i.e. the more generai it is)
the more restricted we are {iaside
tha generic as to what we can do to
objects of that type. The only pre-
defined operations available inside
the generic on an object of s gener-
ic foreal type parameter are those
that are pradefined for ALL types
that can possibly be wmatched in an
instantiation of the generic. For
example, if we set up a generic for-
mal parameter to wmatch all discrate
types (integer and enumeration
types), we are prevented from using
any addition or multiplicstion op-
erations, since those are not opera-

tions defined for ALL discrete
types, specifically enumeration
cypes.

SUMMARY

Generic projraum units are in-
valuable in building up libraries of
reusable code. Fortunately, uti-
lizing existing generic program
units in your program through an
instantiation is not very diffi-
cult=-just pick the right ganeric
and pass it the right paraaeters to
inscantiate it. Writing a generic
is more involved in that you have to
decide what operations are needed in
the algoricthm and how general ycu
vant the generic tc be when setting
up the generic foramal paramaters.

EXERCISE 9-2

l. This simple function takes in two object of the pre~defined INTEGER type
and does a floating point division on them, which returns a value of the pre- T
defined type FLOAT. Your job is to modify this function so it will take in two !
objects of any integer type and return a value of any floesting pcint Cype you 1
choose. (1i.e. make it s generic wvith twc generic formal parameters)

2. After the gensric is written vrite & main procedure which tests it using
user defined integer and floating point types.

e L TS8Pt d b e s T A bt b s A r AN AR 444 I I P03 44744043494 8453944484445394F44 .

-3 2 .
==X Abgtract: 4
-y ¥
== Author: 4
-~% Date: 4
-l %
B Y4 a4t eat b te 8 r89833 88093308k s409830892308834473438+993444942444

function INT_DIVISION (INT1,INT2 : INTEGZIR) returm FLOAT is
begin
retuia FLOAT(INTI) / FLOAT(INT2); i

end; ‘II!}T)?

9-6

Aﬁﬂ

Exmple 9-]

~=XXXXITXLLTXXLXXXXXETRTIZXZXXIZLLLXXTLTXXZLIXXZTILRXXXIRIIXXXZZLIZLIXZTTILZIXLL

bt |
-2
~3
-3
—X
-3
-3
~3
-3
==X
-X
4
-3
-2
—X
X
-2
-
-3
-3
-3
-2
-2
-3

2
Abstract: This generic package implements en associstive table with X
an abstract state machine. The packsge has the foilowing 2
subprograas: . 4
INSBRT <~ Places & key snd its assoclated value into 2
the table i
RETRIEVE = Retrieves the value associated with the
given key

2
%
2
4
Ganaric Pavameters: 4
SIZE -~ The size of the tsbdle) 4

KZY <~ The type for the key h 4

VALUE - The type for Zhe associated values 4

X

4

4

Author: Jimmy Key
Date: 7 Mar 87

Propagated Exceptions:
TABLE_1S_FULL <~ Raised when the INSERT operation tries

4
X
4
b 4
to place an association in a full table. X
ITEM_NOT_FOUND ~ Raised when the key is not in the table 2
' during the RETRIEVE operation. b 4
4

¢4

-ZZZ!Z!!Z;!IX!!X!ZZ!!2!2!!2!22212222222818!22!:222!2!2:!22222221!!222!1!2

generic

SIZE : POSITIVE := 100;
type KEY is private;
type VALUE 1is privste;

package TABLE MAKER is

procedure INSERT (KEY_ITEM ¢ KEY;
A_VALUE ¢ VALUE);
function RETRIEVE (KEY_ITEM : KEY) return VALUE;

TABLE_IS_PULL
ITEM_NUT_FOUND

exception;
sxception;

end TABLE_MAKER;

(Continued on naxt page)

9-7

package body TABLE MAKER is

type PAIR is record

A_KBY

ITs_VALUR
end vecord;

KREY;
VALUES

type COUNT is range 0..812K;

subtype INDEX is COUNT range 1..8I128; o

type TABLE_ARRAY is array (INDEX) of PAIR;

A_TABLE

CURRENT_INDEX

TABLE_ARRAY;
COUNT t= COUNT'PIRST;

44 333533393339 933388889 3939088332 33935933333333333323333835353232833%3%49

-
-2
--3
-2
-3
-2
-X
-2
-2
~=2
o
-

e 1113333845445 433438044948483 388 V3880998833338 3333344333333333834333%43]

Abstract: This procedure places a kay and ite associated value into

the table.

Author! Jimmy Key

Date: 7 Mar 87

Propsgated Exceptions:
TABLE_IS_FULL = Raised when the INSERT operation tries

to place an association in a full table.

procedure INSERT (KEY_ITEM : in KEY; i

begin == INSERT

A_VALUE : in VALUE) 1is

1f CURRENT INDEX = SIZE then
raise TABLE_IS_FULL;

end Lf;

CURRENT_INDEX := CURRENT_INDEX + 1;
A_TABLEUCURRENT_INDEX) t= (KEY_ITEM,A_VALUE);

end INSERT;

== (Continuad on next page) —

9-8

2
X
2
2
2
3
2
X
4
2

X
X
2

i.
(.

@

e 334335233833 8544380 3483333539449 59343739544838948934334938834547498345341
X 4
~~X Abstract: This function returns the value associated with the given X
-2 key.

!
»n
]

~=X Author: Jimmy Key :
-3

== Date: 7 Mar 87 , 4
-3 4
== Propagated Exceptions: 4
- ITEM _NOT_FOUND = Raised when the key is not in the table 2
-l during the RETRIEVE operation. F 4
-3 2
-zzzzzzzzzzzzzzzzzzzzzxzzzzxzzzz:zzzxzzzzzzzzzzzzzzxzxzzzzzzxzzzzzzxzzzzzz

function RETRIEVE (KEY_ITEM : KEY) return VALUE is

begin -— RETRIEVE

~=Search table backwards linearly.

for THIS_INDEX {n reverse INDEX'FIRST..CURRENT_INDEX lcop

if A TABL!(THIS INDEX) .A_KEY = KEY_ ITEM then

return A TAIL!(THIS INDEX) . ITS VALU!.

end if;
end loop;
raise ITEM _NOT_FOUND;

end RETRIEVE;

end TABLE MAKER;

== (Continued on next page) =—-

9-9

—:u:zzxzmzzzzzzzmmmmm:zmmmmmumummzzmn
== Abstractt This progres msnipulates the goneric TABLE MAKER declarod X

w=f previously. It inetaaciaces tve tables, 8 height table
-: and an amount table.

==X Author: Jimmy Key

«-=% Date! 9 Mar 8?7

o]

«=XTLERXXLRXXTRZXTRXTTRIX XX LXTXXITXAEAXTXXIREXIXIIZZXAXLLXAXXAXXIXATXLZXX

with TABLE MAKER,TEXT 10;
procedure TABLE_INSTANCES ic

wﬁ constant := 1 000 00G0.0;
1GHT
ul 1GUT

constant = 1003
MAX_STRING

Sonstant in 2y

subtype NAME is String{l..MAX_STRING);
type REIGHT is vange MIN_HEIGHT..MAX KKIGHT; == {nches
type DOLLAR is digits € range U.0..MAY, AMGUNT;

HOW TALL : HEIGHT;
AMOONT t DOLLAR;

package HEIGHT TABLE is new TABLE_MAKER(KEY => NAME,

VALUE »> HEIGHT);

package AMOUNT_TABLE ts nev TABLE_MAKER(KEY => NAMI,

VALUE => DOLLAR,
8128 => 200); -

begin ~— TABLE_INSTANCES

MEIGHT_TABLE.INSERT(“Clyde ", 69);
ANOUNT™TABLE. INSERT(“Bonnie “r 10_600,0);

HOW_TALL :e HEICHT TABLE.RETRIEVE("Clyde
AMOUNT = AMOUNT TABLE.ARETRIEVE("Bonnie

A
e @

axception

when HEIGMT TABLE.TABLE IS PULL =)
TEXT 10.Fuc(“Meight cbIT is fulll®);
when AMCUNT_TASLE.TABLE IS_PULL =)
TEXT 10.Put(“Amsount table is fulll®);
when HEIGHT_TABLE.ITEM NOT_FOUND =) A
TEXT 10.Put(“HRIGNT not Tound in Height table!");
when ANOUNT_TASLE,ITEM_NOT_ POUND *>
TEXT_10.Put("Amount not found in Amount table!");

end TABLE_INSTANCES;
9=10

242¢ 20 ¢

a0 3¢

Chaptor 10

OMJECTIVE

Given a prograa specificacion,
an incomplete program, student in-
structions! materiale, and etudent
aotes, add taska to correctly imple~-
sent the program. Progran miet eon-
form to course softwers engimnering
stendards. . Instructor may provide
up to 5 ssazists.

We can defina an Ada tssk as 2
progras unit that logically executes
in parallel with other progran
units. A key word in thal defini-
tion is "logically®™; a prograa with

. Ada tasks can not oaly run on mlti-

ple proceseor machinss, but it cen
run on a machine with s single pro-
cessor as well., 1In this case, the
execution of a task in soashow in-
tetleaved with the execution of the
nain program and other tasks; many
of the decisions as to how this is
done is left up to the compiler im~
plemantation. Programming with
tasks can therefors be pretty
tricky, especially if the tashks muet
communicate with each other & great
deal.

In this chapter we'll give you
Just a brief caste of what casks
look like and how they work.

INFORMATION

SPECIFICATION

A task is like any other prograa
onit in that it has the same two
parts, a specification and a bdody,
that other program units hava. As
you might expect, the specification
defines the communication interface
between the task and other program

- program units

10=1

units. One difference betuesn tasks
end other program units 4is that &
task cannot be & lidrary unit; 1t is
ALVAYS .in tha declarative part of
anothar program unit.

A siuple task cthat guas off on
its owm and dossn't talk with other

can have & simple
specification:

task CHZCK_SRENSORS;

1f, on the other hand, we needed to
communicate with a task, we can do
so through aemtries defined in the
task specification:

task ALTIMETER is
eniry WRADING (HELGHT : out NATURAL);
end ALTIMETER;

In this case, we inittfate communica~
tion wicth this task by {ssuing an
eatry call. Thie entry call can b
given frou any sequence of state~
wents of any other program unit
whare entry READING is visible. The
entry call would look like this (as-
suming that ALTITUDE is a variable
of the subtype POSITIVE):

ALTIMETER.READING(ALTITUDE);

When this line is rveached in a se-
quence of statesents, the progras
unit will wait unti]l the ALTIMETER
task {s ready to accept communics~-
tion through the READING entry.

The body of a task contains the
sequence of statements to bes per-
formed by the task. The syntax is
very sisilar to the syntax of other
program unit bodies:

task body ALTIMETER 1s
LOCAL ALTITUE : NATURAL t= 0;

begin
loop
« = Perform statemants to check

When ALTIMETER resaches the accept
statement, it waits until some other
program unit calls the READING entry
bafore it moves on. Once asomeons
calls the entry, the statemants in-
side the accept statcmant are exe-
cuted and we s&y the two tasks are
in resdesvous. ' This tera just names
the lifetime of task ccmmunicaotion.

TASKING STATEMENTS

We said in the pravious example
that with the accept statement for
the READING entry, cask ALTIMETER
would wait until an antry call (s
sade to the entry. This {s not a
good situation to be in {f the task
should be off doing some critical

work. Por example, in the ALTIMETER
task, we probably wouldn't want to
Just wait around at che accept
statemont for another prograa unit
to inquire about the alticude. This
would be like a newsatand owner not
selling todey's papers until yester-
day'c were all eold out. 1ldeally,
if nobody is waiting to get ths al-
titude, the task should go back and
compute an updated value.

Ada allows this capadility
through various forms of the sslect
statement. The select statamant
allows a task to select between ac-~
cepting an entry or perforsing some
other action. Your instructor will
ba covering the details during the
lecture.

SUMMARY

Ada tasks allow mulciple threads
of control to be eet up in a pro-
gram. This can make the software
more efficient 1if working with mul=-
tiple processors. Even with aingle
processor machines, tasks ate a good
tool to break up the solution to be
more understandable. Real world
processes that operate in parallel
can be codud with tasks to raeflect
that parallel nature in the software
soluttion,)

EXERCISE 10~-!

l. 1In the following program write the task specification for QUEUE_TASK (the
task body is provided). Make sure you include the required entries to PUT
a value into the queue and TAKE a value off of the queue.

2. Modify the select statement of the task body to do the following:

a) The task will attempt to rendezvous with & caller, but only if it

can do 80 immadiately.

If no immediate rendeszsvous is possible,

it will executs an else part, which prints out an appropriste

aessage to the teruinal.

b) The task will wait for a caller, but {t will wait no longer than
60 seconds. 1f 60 seconds elapse and rendeszvous does not oceur,
print out an appropriste message to the terminal.

10-2

T

1

3. The main subprogram should make calls to the task entries. Make ths entry
calla to do each the following:

a) The task makes the call, but wvithdraws it {f rendezvous does not
ocur within the 60 seconds (timed antry call’.

b) The task will attempt an entry call, but withdrawva ic if the
rendesvous is not immediately possible (conditional entry call).
If no rendezvous can occur, it executes the else part of the
statement, which prints out an appropriate messags.

==ZXZARXXXTXXXIXXIITXTIIIXRXIXXXLAARXRXXIIAXZXXXXLAXIXZIIXTILXXZZXRXXXIL XXX

— 4
==X Abstract: This program places values intn a queue and retrieves z
-3 them later. z
-3 X
==X Author: Andrev Asynchronous 4
- X
-—% Date: 20 Oct 86 4
-—g X
=X XXZXXZZXZXLIZXXRZXZIXRXZIZXXXXXXXXZXZXZZXZEZXXZZXXTXAXRLAZAXXXXXAXZRXXLLLR

procedure START_QUEUE_TASK is

MIN_NUMBER : constant := 0;
MAX NUMBER : constant := 10 _00U;

type NUMBERS is range MIN WUMBER..MAX NUMBER:

A NUMBER : NUMBERS := MIN_NUMBER;

==~ Write QUEUE_TASK specification here.

== (Continued on next page) --

10-3

-z Abstract: Thin tagk is ehn { lou-utntion of the queve, 1t has ;
wng following entries

-3 T = Place & voluo inco the front of the queue.]
-§ TAXE =~ Retrieve & value from the reasr of the queue. i

-x egthor: gsda:v sgynchronoul
—zxzxzxzxxzzxzzxzzxuuxzmzxxxzzzmxwxmzzzxzzxzzzumxxzxxzxxzzzx
task body QUEUE_TASK is

SIZE : constant := 10;

subtype THE COUNT is WUMBERS range 0..SIIE; .
subtype INDEX i¢ WUNBERS range 1..812%; '
type SPACE is array (INDEX) of NUMBRRS; v -
type QUEUE_TYPE is record .

BUFFER : SPACE; ;

HEAD t INDEX := 1; =~ Next value to be removed. .
Esshr : INDEX = 1}: == Next available slot.

THE_COUNT = 0;
end rvecord;

QUEVE ¢ QUEUS_TYPE;
begin == QUEUE_TASX

loop

selact
when QUEUE.COUNT /= SI2E =)
accept Put(THE NUMBER : 4in NUMBERS) do
nsUEUE.lUFF!ﬁrhU!UE.TA!L) t= THE_NUMBER;

QUEUE.TAIL := QUEUE.TAIL +
QUEVUE.COUNT := QUEUE.COUNT +

ot
when QUEUE.COUNT /= 0 =>

accept Take(THE_! Runnhk {1 out NUMBRERS) do
THE NUMBER := QUhUF BUFFERIQUEUE . HEAD) ;
end Take;

QUEUE.HEAD := QUELUE.HEAD + |;
QUEUER.COUNT := QUEUE.COUNT = |;
or
terminate;
end seslect;

end loop;
end QUEUE_TASK; .
==ZTTXXXXTXXITXIXXZIXZTLXXILZX START QUlUt TASK 22222222222!2!!2222!!2!!2!!!2221
begin ==START_QUEUE_TASK
- Make calls to task.

end START_QUEUE_TASK;
10-4

EXANPLE 10~-1

==ZXXXXXXZXTTTRIRIXIITZXXXLIRLTIITZTILZZZXXXIIXXIZZXXXZZ XXX XXXXXIXTXXXX XX

-y 2
==X Abstract: This program counts the number of sach character from 2
-3 strings that have been entersd from the keyboard. The 4
-3 total count is the total of each character since the 4
=B start of the program. 4
-y 3
==X Author! Count Chara 2
-3 Date: 20 Oct 85 4
-y X
anZZETTITXXXXZXTZXXTLZXZRIZRZZXZREIZZZIZXXIZIZZRTIZZXLXITITZIXZITXIZIXXTIIZZXZ
with TEXT 10;

procedure TASK_EXAMPLE is

MAX_NUM ! comstsat := 100;
CHARACTERS_IN_LINE : coastamt := 20;

subtyps CHARS_TO_COUNT is CHARACTER raage ‘'a‘'..'z';

type COUNT_NUM is vamge O..MAX NUM;

type CHAR_COUNT 1s array (CHARS_TO_COUNT) of COUNT_NUNM;
subtype LINE ie¢ STRING(1..CRARACTERS_IN LINE);

MY_LINE : LINE;
CHAR t CHARACTER = ‘Y';
LAST ¢ NATURAL := 0;.

task COUNT_CHARS is
eotry SEND_LINE (A_LINE : im LINE);
entry PRINT COUNT;

end COUNT_CHARS;

package COUNT_I0 is mew TEXT_I0.INTEGER_IO(COUNT_NUM);

- (Continued on next page)

10=5

A R R L

:::122!!22!8!28!2!8888888!X!88882t8888!333828!28338!!!3!!883!8!88!8!2!!88!;

==X Abstract: This task counts the number of sach character in the 2
-3 string passed in and maintains tha running tozal uatil 4
-3 told co print it out. The entries to the task are: X
-3 SEND LINE = Call to give task the string to count X
- PRINT_COUNT =~ Call to print out number of each 2
-: character counted i
. ==X Author: Count Chara 4
-§ Date: 20 Oct 85 §
e $ 34343383 893434443933333333433493493483873839324544453339348533343933%34799

task body COUNT_CHARS is

LOCAL_LINE : LINE;
COUNTER : CHAR_COUNT := (others =) 0); .

begin ~-- COUNT_CHARS

loop
salsct

accept SEND LINE (A_LINE : im LINE) do
.“LOCAL_LIYE t= A_LINE;
;

for 1 iv LOCAL_LINE'RANGE loop

1f LOCAL LINE(I) im CHARS_TO_COUNT thea
oog;rrmx) ¢= COUNTER(IY + 1;
1

ead loop; QII'QIQ%

or ;
accept PRINT_COUNT; ?

TEXT_10.PUT_LINE("™ THE COUNT OF THE CHARACTERS 1S => *);
for I in COUNTER' RANGE loop

TEXT 10.PUT(" NUMBER OF ");

TEX'I"IO. PUT(I);

TEXT 10.PUT("'S =>);

COUNT IO.PUT(COUNT!R(I)).

TEXT_ T0. NEW_LINE;

eand loop; *
or
terminate; . b',
end select; .
end loep; _ _ .

end COUNT_CHARS;

(Continuad on next page)
10=-6

°®

~-zuuﬁuxnuxuuz:nuxnuxltuanunr1;zuwmnuxnuunu!vuxvuuxvuzuunn

begin - TASX KXAMPLE
lonyp

TEXT_10.PUT_LINE(" SNTER UP T0 20 CHARACTERS > °):
TEXT 16.CEY_LIME(NY_LINE,LAST);

ot _CuArs.SEMD_LIWE(HY_LINK);
TxT_T0.PUT(" DO YOU WISH TO CONTINUE (Y or W) : °);
TEXT 10.GKT(CEAR);
m_nom'_mi
wxit vhee (CHAR = "N’ or CHAR = 'a');

ad lesp;

COUWT_CRARS . PRINT_COUNT;

end TASK EXANPLE;

10-7

Chapter 11
PROGRAM DESICE USING Ada

1. Given a prodlea specifica-
tion, student instructional materi-
als, and student notes, student
teams will develop & complete infore
sl stretegy for ths prodlea. In-
strustor say provide up to 5 as-
sists.

2. Given a problea specifice-
tion, informal strategy, student
instructional materials, and student
potes, student teams will ocorrectly
forsalize the informal strategy.
Instructor say provide up to 4 as~
siste.

3. Given a problea specifics-
tion, an object oriented design,
student instructiona. ssterials, and
student notes, studcnt teams wil)
correctly tranafora an object ori-

ented degign into Ada Prograa Design .

language. The design language sust
conforas to course software engineer-
ing standards. Instructor masy pro-
vide up to 4 assists.

As the saying goss, there {is
sore than ons way to akin a oat.
There is also wmore than one way to
design softwarce. These msthods mey
vary anyvhere froa very structured
full life-cycle methodologies with
automated tools, to what cau best be
described e “ad hoc” ooding or
"haocking”.

As one wvise man ouce seid, no
one tool is always best; we should
use the best tool for the Jjob at
hand. Scftware continues to grow
aore arnd sore complex as we taackle
larger projects. 7Tools that deal

11-1

with this coaplexity are evolving
also. In older languages, the
primary oonstruct for structuring
programs . is the subprogras. This
leads the software Jdesigners to
structure the software based on the
funotions to be performed in the
systen. Ada has other tools besides
sudbprograms to0 aid in dealing with
the complexity of software. Packag-
es and tasks can be used to give s
more organised and understandabdle
layout to the ocode. Using . thase
tools, we are no longer oonstrained
into structuring our software based
on function; we now can break it up
using objects or oversll processes
in the system &8s the structuring
oriteria.

Object Oriented Design {0NOD) is
one deaign tool that has Lecome pop-
ular with Ade. As its name implies,
00D breaks the software up into the
abstract cbjects that exist in the
systes. It utilizes the package
structure as the main building block
of the design. The cornerstone of
00D is that s peckage groupe togeth-
or the definition of the class of
cbjects with ths operations that ocan
be performed on objects of this
class.

00D PROCESS

The osteps 4in Object Oriented
Deaign vary sossvhat, depending on
who you talk to and when. Some or-
genisstions use & wvery general ap-
proach with only a few steps while
others use an approach that tries to
provide more guidance by breaking
down the major steps into sore de-

. 2.

tail. There are argusents on both P
./

sides of the issue; ask your in-
structor if you want a more detailed
discussion. The general steps to
00D, adapted from Grady Booch in the

second edition of his book Software

Engineering with Ada, are:

1. Identify the objects that
exist in the system and their
charscteristics.

2. ldentify the operations that
are performed on those ob-

Jects.

3. Establish the visibility of
each object in relation to
the others.

4. Istablish ths interface of
each obdject.

S. lsplemsent each object.

O0D is an iterative process. First
perfora the above steps at the high-
ost level of sbstraction, encompass-
ing the entire systes. In oxder to
perfora the final step of fmplement-
ing the objects, it's likely that
you'll have to repeat the steps on
the next lower level of abstraction.
This will identify secondary objects
that are needed in the systes, but
that didn’t show up in your consid-
eration of the overall process.
Repeat the steps for each level of
abstraction until each obdject is
simple enocugh to bs easily under-
stood and isplemented.

There are a few ways to identify
the objects and operations in the
systar, The end product of the
analysis of the problea should give

11=2

you a starting peint. Your instruce
tor will show you one way of identi-
fying the objects and operations
that makes use of a written para-
graph that defines what the systen
will dc.

Ma, with features such as pack-
ages, generics and tasks, has added
struoturing capabilities over tradi-
tiocnal languages. These added copa-~
bilities require the use of differ-
ent deaign msthods if they are to be
used to their full advantage. Ob-
Ject Oriented Design attempts ¢to
use more of the features of Ada and
result in a design that produces
sore understandable and' maintain-
able cads.

11-1

Develop an Object Oriented De-
sign for a system that will cwnt
the change in your pockst. four
solution should use the following
steps as its algoritha:

1. Zsro out the counter for the
total value of the change.

2. (While the pocket is not
enpty) Take & coin out of the
pocket.

3. Deteraine the value of tihe
eoin.

4. Md the 'alue of the coin to
the total wvalue.

S. Tinally, display the total
value after ths pocket is easpty.

N

Software inginesring Standards:
FUNDAMINTALS OF Ada SYSTEMS

8. Type all Ada raserved words (LRM 2.9) (n iower case.

b. Usar defined names/ldencifiers should be typed in all upper case;: 1.e.
AIRCRAFT. However, many autoasted tools and some authors of Ada textbooks
suggest capitalizing only the first letter of user defined names/identifiers;
i.e. Alzcraft. This is acceptable but not as readabdble.

Ce IIM the embedded undetscore to separate multiple=-word identifiers;
1.00 NY_ATRCRAFT _TYPE. Also, use embedded underscores to sdd readability to
numbers; “t.e. 1 000) _000.00.

d. Propearly alignad code (s much msore readable. Try {indenting two or

turec spaces for each level. In addition, align begins and ends with their
appropriate parent.

e. Add blank lines to aid readadility. Use blank lines to set logically
related code apart. Specifically, supacing will depend on what's best tc make
your program eesier to resd. Sowe hints would be to add spaces to offset

subprograns and Cheir associated begin, declarations, loop structures, 1if
statements, etc.

f. Tdentify the nnme of the subprogeam cor packuye with {t's end
statmment; l.e.: end MY_PROGRAM;. I[n addition, it's a good practice to
associate the subprogran name with its begin statement; f.e.:
begin == MY _PROGRAM. Notice you must type in the et st since this 1
only a comment to help the saintenance programmer.

lecloafoel == (hdcut levels 2 Or 3 spacus

== Abstract: Comment lines outlining the putpose
-— of tha program unit.

== Author: Name of programmer

- Datc* Date program unit was written,

with TEXT_l0; =- context clauses
procedure | CODING_FORMAT_DEMONSTRATION is

-= Declare named numbers
MAX VALUE : coastaat := |0_000.0 w= Align throughout to
wor LIMIT : comstamt := S - {mprove readability.

.

== Declare r various €
type nm is delta 0.01 range 0.0 .. MAX_VALUT;
type wor is venge | .. LOOP_LINIT;

= Group object declarations in one location, one to a line
MY FIXED,

HIE PIXED NUMSER,
YOUR_¥ IXED_MIMBER : FLXED_TYPE e 0.01;

package MY_FIXLC [0 is new TEXT_(n.FIXED_{0 (FIXED_TYPE);

'l
N\

| o

("'

-

begin == CODING_PORMAT_DEMONSTRATION

MY_PFIXED := 10.0;
llIS FIXED_NUMBER := MY_FIXED ¢ YOUR_PIXED NUMBER;

for 1INDEX in LOOP_TYPE loop == notice the blank lines added
MY_FIXED ¢= MY _FIXED + 0.0l; == to grcup the 'for' statement
end loop; -~ and improve readability

1f MY_FIXED = YOUR_PFIXED_NUMBER then
~ A ssries of.
~= gtatements if the;
== above was true; == Use blank lines to

else == group any related code.
== A series of;

== gtatements 1if the:
== gbove was falsc;
end Lf;
MY rlxuu to.our (My_FIXKD);
end CODLNG_TORMAL_DEMONS TRATION;

g Yen, documentation {s a necessary evil. Much of our code today is not
docunented weii and is a nightmare to maintain. Documentation up front adds

to program readability, understandadility, maintainadbility... «.. need wve say
80T 8.

he As a winimum, we will expect your code to be commented as outlined
below. Other cosments should be added at your (or the instrictors) discretion
to enhance understandability of your code:

Abstract: Comment lines ocutlining the purpon.:

of the prograa unit.
Author: Newe of prograsmer

Date: Date program walt wes written,

procedure DOCUMENTATION is
begin == DOCUMENTATION

CODE_STATEMENT;
loop
tf N0 DOCUMENTATION then -~ what will happen L{f students

tmwcmt VILL WOT_ACCEPT; == don't document their code

STUDENT um. ik 0o cxnctu - g explained here
owrIL_UY_ts Wxclr;™ *

-u;
end Lf;
end loop;
und DOCUMENTATION;

A-2

&

BASIC Ads TYPES

a. UWhen practical, organize the declacative vegion of a subprogram or a
package specification as follows:

NAMED NUMBERS

TYPES

OBJECT DECLARATLIONS
TEXT_IO [NSTANTTATIONS

b. Separate logical groupings of types by a blank line.
¢« Desclarations of records should follow this format:

type MY PERSONNEL_FILE is
vecord

essae == yvarious recerd fields
end tecord;

d. Use rames that are descriptive in nature to enhance program
resdadility. Put some thought into this. A meaningful neme will greatly
enhance the maintenance programmer's job.

e. Don't forget to use meaningful object names alan. Your code will be

judged for a great part st hov readable it is. Your {instructor will probadly

highlight smbiguities whervever possible.

f. Alvays use ‘uamed numbers' when placing range constraints to your
types. This will add a degree of understandability and modifiability to you

r
code by eliminating those "MAGIC NUMBERS™ we're used to using. (hcopuoa‘

are allowed when vange of ‘0’ or 'l' are used)

g As a general rule, objects should be initialiszsed when declared since
the language does not implicitly do so.

LY] IR P R RN PR R R NY RN Y N

Abstract: Comment lines outliniag the purpose
of the program unit,

Author: Name of programmer

Date: Date program unit was written.

procedure DEMO_TYP ING_STANDARDS is
MAX_SIZE : constant := (00; == Named number
type NBR _OF ITENMS is rvange | .. MAX_SI1ZE;

type AIRCRAFT Lo (PICGHTER, BOMEBER, TANRER, NONE);
type CARS is (POD, LINCOLN, MERCURY, NONE);
type BOATS fe (ROW, MOTOR, PADDLE, HONE);

type BASE AIRCRAFT is acray (NBR OF ITEMS) of AIRCRAFT;
type LOT TARS is array (NSRTOFTITEMS) of CARS:
typs MAKINA_BUATS s accay (NBK_OF_ITEMS) of BOATS;

== (Continued on next page)

A=) . .

®

type VRANSPORTATION FILE is
record

LAND : CARS = FORD;

SEA t BOAIS te ROW:

AIR : ATRCRAFT := FIGHTER ;

end record;

BASE_AIRCRAFT := (others => NONE)

THE_AIRCRAFT :

THE_CAR i LOT_CARS t= (others => NONE)
THE_BOAT t MARINA_BOATS 1= (others => NONE)
TRANS_HISTORY ¢ TRANSPORTATION PFILE ;

begin — DEMO_TYPING_STANDARDS

end DEMO_TYPING_STANDARDS;

o vs v

L
AT

COWTROL STRUCTURES

as Avoid 'HARD CODING' the loop patametecr specification. The use of
attridbutes will greatly enhance msintainability of your code.

be Ian a 'for loop' statensnt, us¢ A acaningful name by which to {ndex the
loop. Single character names are permitted an the fndex w: are discourasged ¥
and are not acceptable during this course: ‘

This i» not good:
for 1 in 1 .. J loop

end loop; - ' ‘ | L

This {s OK: , ')
for 1 in FIGHTER .. TANKER loop

end loop;

But this 4is batter:
for AIRCRAFT in AIRCRAFT_TYPE'range loop

end loop;

¢. Structuring case statements is {uportant for enhuncing readability of
your code:

casa THE_AIRCRAFT (s

when FPIGHTER =)
00_A_SEQUENCY;
OF_STATEMENTS §

when BOMSER =>
00_A_SEQUENCE;
oy \t‘l‘Aﬂ:HENTs.

whatt TANKER =
n_A_SEQUENCK;
OF_STATEMENTS;

when NONc =
exit;

end case; '

a. Now, organize the declarative reglon of program units containing
enbedded subprograns as follows:

NAMED .NUMBERS

TYPES

OBJECT DECLARATIONS

SUBPROGRAM SPECIFICATIONS (when needed)
TEXT_I0 INSTANTIATIONS

SUBPROGRAM BODIES

b. However, as & general rule, don't embed subdprograms. Eabedded
subprogcans should be used waen their utility is only applicable to the local
code. Once embedded, the subprogram is not rveuseable. If you do ewbed
subprograms, group the subprogram specifications together, then placs the

subprogram bodies after any 1/0 instantiacions. This will add to prograa
readability and understandability.

€. When subprcgrams are not embedded, compile subprogram specification
and body to separate files. :

d. WUhen prudent to do sc, use NAMED NOTATION for parameters when calling
subprograms to aid understandability and future modiliabilicy:

Abstract: Comment lines ~utlining the purpose
of the program unit,

Author: Naae of programmer

Date: Date program unit was written.

procedure STACK UTILITIES is

INDEX _SIZE - ¢ constant := 20;
MAX_NUM_OF_ITEMS : constant := 50;

type ITEMS is renge 0 .. MAX_NUM_OF ITEMS;
type STACKS is array(INDEX) of ITENM;

THE_STACK : STACKS

X : t= (others => 0);
THE_ITEM : ITEMS := 0;

procedure PUSH (STACK : in out STACKS:

ITEM : in LTEMS);

procedure POP (STACK : in out STACKS;
ITEM : out ITENMS);

package ITEMS_IO is new INTEGER 10 (ITEMS);
== (Continued on next page)
A=h

¢

““d

== Abgtract: Comment ltaes nutlining the
-— purpose of the program unit.

procedure PUSH (STACK : in out STACKS:
ITEM 1 in TTEMS) 1

eee == Local declarvacions for PUSH

begin «= PUSH
see == Code for procedure PUSH
end PUSH;

== Abstract: Commant lines outlining the
= purpose of the program unit,

procedure POP (STACK : in out STACKS;
(TEM out UTEMS s i

cae = Local declarations for POP
begin =~ POP

eu == Code for proceduras POP
end POP;

bagin ~=- STACK UTILITIES

POP (STACK => TME STACK = procedure call using named
ITEM => THE_ITEM 5; == notation for parameters.

end STACK UTILITIES; “ :
S k
AV

Pk iy

PACKAGES

a. Compile the package specification and the package body iu separate
files.

b. Do not 'use' any package ‘withed in' to your program. This will help
in tracing program resources. The 'use' clause with TEXT_10 is aceceptable.

Ce As a general rule, don't declace objects in package spucifications.
These become global and can cause problems vhen more than one program unle

accessas the package. Namad nuabers dr constant objects are peraitted since
their value can't change.

d. Only 'with' packages and subprograms where their utilicy is needed;
1.e. you probably don't need TEXT_ 10 for the package specification but may
need it for the package body (so only 'with' it into the body). This is in
keeping with the principle of LOCALUZATION.

e. Organize the package spucification as follows:

B R TR EEEIN T EEEIER YR RS "EEREREEX L LENE TR LRY Y

Abstract: Comment lines outlining the pucpose of
each of the program unitsy in the package.

Author: Nawe of programmer

Date: Date progras unit was written.

with ..eo = context clauses
package PACKAGE CONTENTS is
NAMED NUMBERY
TYPES
SUBPROGRAM SPECIFICATIONSQM PACKAGE_CONTENTS ;

e, Organize the package body as follows:

vith TEXT_[0, ..ec. == And other coatext clauses needud
packsge body PACKAGE_CONTENTS 1is

= local declacations nceded hy hody subprogcams
= {inclwiing any TEXT_10 Llastantiations.

- ewe -a.n

== Abstract: comment lines outlining the
- purpose of the programs unit.
== Author: Nawme of programmer (i€ different from authuc

of the package)
Date: Date program unit was written.

LOCAL SUBPROGRAMS (NOT DECLARED IN PACKAGE SPECLFICATION)

- uo:uc:: Coasent lines outlining the
purpose of the program uaic.

Lo XY - IR T EZL L 1 2

SUBPROGRAN BODTES TO CORRESPUND WITH THE PACKAGE SPECLPICATION
end PACKAGE_CUNTENTS;

A-8

(2

v 4

EXCRPTIONS

a. BException handlers are designed to handle e¢rroneous conditions. D’(‘"\
NOT use exception handlers with wuser=defined exceptions, or predefined

exceptions to take the place of checks (for situations that will occur
aormally) that should be handled by the program's executabdle code.

bs Use a block statement to localine ua exception when appropriate.
Reneubet though, overuss of block statements can cause confusion in code

rveadability. 1If you find this situation, it asy be butter tn create a
subprogran for that section of code.

€. 1f s subprogram is in s package, and {f that subprogram propagates a
user—dsfined except on, the aname of that exception will bde declared in the
package specification; and the subprogram documentation will outline the
conditions which would result in propagation of the exception. This allows
the user of the package to correctly write the main program to provide for the
erronecus situation Lf it occura, 1If a subprogram ralses a predefined error,

that should also be addressud in the subprogrtam documentation that appears in
the package specification.

d. Always align the rescrved word excuption with {ts 'begin' and ‘end'.

e. Don't rely on, or overuse 'others' as a means of handling exceptions.

each subprogram in the package.

Author: Name of programmer

Date: Date program unit was written.

Propagated Exceptions: must specify any exceptions (t.e.;
STACK_OVERFLOW) that will be propagated by
A subpeograa.

package STACK_PACKAGE is

type ITEMS is range O .. MAX NUM_OF_LTENS;
type STACKS s array(INDEX) of ITEM;

procedure PUSH (STACK : in out STACKS:

ITEN : {n ITeMs);
procedure POP (STACK : in out STACKS:

. ITEM : out ITEMS);

STACK _UNDERFLOM, .
STACK_OVERFLOW : exception;

and STACK_PACKAGE;

A-9

Abstract: Comment unu_outnﬁtu tha purposes of ..f‘"\

A
M

-

package body STACK_PACKAGE is

Abstract: Comment llnes outlining the purpose of
the program unit,

Propagated Exceptivus: must specify any exceptions (i.e.;
STACK_OVERFLOW) that will be propagated by
this subprograa.

S,
p .|
t1eit

procedure PUSH (STACK : in out STACKS;
ITEM : in ITEMS) 18

begin — PUSH
. i ~ 4f SOME_CONDITION then == gome sequence of statements
. raise STACK _OVERFLOW; = that may taise STACK OVERFLOW
. end if; .
axception

when STACK_OVERFLOW =)
raise STACK OVERFLOW;

end PUSH;

Abstract: Comment lines outlining the purpose of
the program unit.

Propagated Exceptions: must specify any exceptions (i.e.;
STACK_UNDERFLOW) that will be propagated by
this subprogran.

procedure POP (STACK : in out STACKS; :
- ITEN out ITEMS) is
begin ~= POP
1f SOME_CONDITION then = gome suquence of statements
talse STACK_UNDERFLOW; == chat may raise STACK_UNDERFLOW
el Lf;
axception

when STACK_UNDERFLOW >
RAISE atack_undecrtflow;

. end STACK_PACKAGE;

A=10

o
<

3

a. The forsat for a gencric unic/specification should be as follows: .(*

= Abstract: Comment lines outlining the purpose of the

- program unit. -
== Author: Nane of the pntu-.r.
== Date: Date program unit was weitten.

== Propagated Exceptions: wmust specify any exceptions that
- will be propagated by this subprogram.

. generie
VALUE_PARAMETER : in SOME_TYPE; .
typa TRNERAL_PURPOSE 18 .oceee; == Some genuric type declacration
with procedure NEED RESOURCE (VALUE : in GRNETRAL PURPOSE); .

" procedure GENERIC_STANDARDS (SOME_OBJECT : in out GENERAL_PURPOSE);

procedure G‘NER‘Q_’TAHDARDS (SOHQ_leBCT : in out GENBIAE_PURPOSE) is
== local declarations ‘ '
begin = “Nulc_ﬂmokkns

ees} sequence of statements that
eee} == nead the above generic parameters

exception
wvhen (some condition) =>
sece) == gsome sequence of statemsnts - t("’\
essel == to handle the condition VU

end GENERIC_STANDARDS; ‘

b, Place generic instantiations within the declacative rvegion at
a locatlion that still allows you to geoup ohjact daclaratlions,

c. lnntantlate a genuric unit as follows:

== Abstract: Comment lines outlining the purpnse of
the program unit.
Author: Name of programser : -
Date: Date program uait was written.
Propagated Exceptions: must specify sny exceptions that
will be propagated by this subprogram.

U-I.:h TEXT_10, GENERIC_STANDARDS, A PK;

03 .
procedure DEMO_INSTANTIATION (s

type MATCHING TYPE 18 cocscecccess = Whatever.
type A_Mltkt_ﬂ”: % cecccncane

== (Continued on next page) —

A=11 . .\/

THE_MATCH, '
PON_ _SPECIFIC : ¢ A_GENERAL TYPE := ?;

package MATCH_I0 is new INTEGER IO (MATCHING_TYPE);

*“ use MATCH_10;

procedure GENERIC_INSTANCE is new GENERIC_STANDARDS
(VALUE_PARAMETER => THE MATCH;
: G!NERAL PURPOSE => A GSN!RAL ._TYPE;
NEED_| RESOURCE =) A . PK.LIKE PROCDUR!),

bagin = DEMO_INSTANTIATION

. R ..C.

: GENERIC INSTANCB(NON |_SPECIFIC); = Procedure call to instantiated
soee} - procedure

) exception

wvhen (some condition) =)
esse; = sOme sequence of statements
essey = to handle the condition

end DEMO_INSTANTIATION;

A=12

PR L

‘ Sig

D SSSSEEEEELLLEEEEEEEEEEE

TASKS

a. It is best to use entries to communicate with tasks to avoid
usc of global objects.

b. Locate task specifications after localized subprograms (if any).

e¢. Group task specifications together when declaring more than one task.

== Abptract: Comment lines outlining the purpose of

-— the program unit R
== Author: Name of programmet .
- Datet Date program unit was written. .
- Propagnated Receptions: wmuat specify any exceptions that T
- vill be propagated by this subprogrvas,

procedure MAIN is

== Naned aumter definitions
= Local type definitions

Local object definitions
Any 1/0 instantiotions

task SCREEN _CONTROL is
antry SIEZE;
antry RELEASE;

end SCREEN_CONTROL; '

task PRINT is
entry PRINT!;
end PRINT:

== Abstract: Comment lines outlining the purpose of

- the program unit. .

== Propagated Exceptions: must spucify any exceptions that
-— will be prupagated by this subprageam,

task body SCREEN_CONTROL is ‘

begin == SCREEN_CONTRUL
o0 . - Sone code
select ¢
accept SIBZE;)
ees == More code Lf required -
aceapt RELEASE; *
end select;
end SCREEN_CONTROL;

A=1)

== Abstract: Comment lines outlining the purpose of tha
— program unit. ’

=~ Propagated Exceptions: aust spucify any exceptions
— that will be propagated by this subprograam.

pr ey v pE S Y YRR Y R R T Y RN PR N ERY YL TR L YRR L

task body PRINT is

begin -— PRINT
YX) - Some code
select
accept PRINT);

end select;
end PRINT;

» begin == MAIN
PRINT.PRINT];

axception

when SOME_CONDITION =>

end MAIN;

A-14

i:.

t e e,

Appendix B
Ada GLOSSARY

Abstraction ~ A principle of Software Engineering. Abstraction in the prowess of extracting essential information relating to a
probiem while filtering out the unnecessary (lower level) details thut tend to cloud our understunding of the probiem.

Accsss Type = An accesx type is used in conjunction with the “ullocutur” statenwent to dynamicully create objects d v

execution, Keyword: arcess,

Access Value ~ An access value provides the location of, or “points 1", an object which has been created by the evalustion of an
allocator. Keyword: access.

Accuracy Constraint = An accuracy construint specifies the relative or abxolute ervor bound of values of a real type. Keyword:
deba, digits.

Ada — The new High Order Language developed under the sponsorship of the United States Department of Defense (DOD) to | -~ |
obta: | the bensfits of language commonality across a wide varicty ol computer xystemx. Ada has been designated by the

DOD as the official language for all future embedded computer upplication programs.

Ada Compiler Validation Capability (ACVC) ~ An integrated set of testy, procedurea, sofiware tools. documentation -
developed by SofTech, Inc. for conducting validation tests of Ada compilers. The ACVC will be used by the Ada .
Validation Organization (AVO) to perform formal Ada validation tests,

Ada Integrated Environment (AIE) = The Ada language implementation systemn, being developed by Intermetrics, Inc. . under
contract to the U.S. Air Force, to enable the development of progrums writien in the Ada Language for military computer
systems. (See APSE)

Ada Language System (ALS) = The Ads lunguage implementation system. developed by SofTech. Ine.. under contruct to the
U.S. Army, that will enable programs in the Ads language for cxecution on mdvanced. embedded military target computer

systems. The ALS represents the finst full Aca Progrumming Suppont Environment (APSE) 1o be supplied to the DOD. (See
APSE) '

Ada Joint Program Office (AJPO) ~ The DOD office responsible fur the encoursgement and contrul of the development of the
Ads language and its implementation in DOD computer sysicma, :

Ada Programming Support Environment (APSE) = A full Adu programming environment thut enubles programmers t.\‘.-)

programs in the Ada language, uxing a stundard set of development toola, thut can be cxecuted on wide variety of target
computers. The Ada languuge system ix u friendly. efficient. Nexible, purtable, euxy to une programming environment.

Ada Software Engineering Education and Training Task Team (ASEET) -~ The purpise of the ASEET is to provide a
detailed and organized approach to the tusk of identifying the Adu education und training needs of the DOD community.,
including methodclogies and materiais to fill those needs.

.

Ada Validation Organization (AVO) ~ The component of the AJPO respomsible for conducting tormal Ada compiler
validation tests and for encouraging the correct implementation of the Ada lunguage.

Aggregate — An aggregulc is 8 written form denating 8 tomposite value. An aray agpregute demotes u value of an amay type: a
record aggregate denutes a value of ¥ record type. The components of un apgnegute may be specitied using either positiona!
or numed associstion.

Allocator — The allocutor sutement creates 4 new object of a type designuted by un socess type. and retumns un sccess value
designating the location of the created ubject.

Ancestor - An ancestor compilation unit uf s compilation unit currently heing compiled is o member of the following set:

A unit mentioned in a with clausc of the compilation unit curnemtly being compiley:

An outer textually-nested unit containing the unit currently being compiled. if thut umit is o subunit:)
The specification part of a subprogrum or puckage body currently heing compited;

One of the units mentioned in a with cluuse of the ancestor compilation undetined in parts (b) and (¢) above; und
Puckuge STANDARD.

o 8 nh oee

In shont, it is uny compilation bnit which is mude visible o u compilation unit curvently being compiled. not including the

unit currently being compiled itscif. ‘)

Attribute — An attributc s a predefined churucte fstic pertaiming 1o the definition of a type or an object

Body = A budy is u program unit defining the executuble portion o implementation of a subprogram, package., or task.
B

Body Stub = A body stub is u replacement for 4 body that is compilcd separately in a subunit.

Code Generator — The component of a compiler buck end that generates the machine language for a specified turget computér.
Typically, a separate code generator is requircd for each type of target computer.

ollection — A collection is the entire sct of allocuted object: designated by an access type,

pilation Unit = A compilation unit is a program unit which can he compiled independently from any other text. It is
optionally preceded by & context cluuse naming othcr compilation units upon which it may depend. A compilation unit may
be the specification or the body of a subprogram or package. ’

Compiler = A compiler is a computer program that can translate source programs written in a High Order Languuge (such as
Ada) into machine language programs that can be executed on specificd turpet computens.

Compiler Back End ~ The portion of the compiler that contains the componcents which depend upon the characteristics of the |

target computer, and therefore must be designed specifically for each turget computer. (Sec Cexle Generutor)
* - Compiler Freat End — See Machine Independent Portion.

Compiete program — A program with no unresoived external reference is a complete progrum.

Completeness ~ A principle of Software Engineering. Completeness refers to the properties of modulzs with a system, i.c., the
module should be small enough to be understood as a whole, und its interfaces should be clearly defined and strictly
enforced. If these conditions are met, it is a triviul matter to ensure that no details are missing from the module in question.

Component — A component is an object that is a pan of a larger composite object or a value that is a part of a lurger composite
value. An indexed component is 3 name containing expressions demering indices. and names a component.in an array or an
entry in a family of entries. A selected compunent is the identifier of the component prefixed by the nume of the entity of
which it is a component (such as a record type). ’

Composite type = An object of a composite type is comprised of one or more components. Therc are two kinds of composite
type: arrays and records. All of the components of an arruy arc of the samc subtype: individual components can be selected

by their indices. The components of a record may be of different types: individual components can be selected by their
identifiers,

onfirmability — A principle of Software Engineering. Confirmability rsfen to ihe organization of a system, insofar ay it is
\ organized in such a fashion us to promote the cflicicnt and reliable testing of the system.

Constant — See Object.

1

Constraint — A constraint determines a subset of the legul vulucs of u type. A value within that subset ix said to satisfly the
constraint, :

Context Clause — A context clause identifies-additional library units apun which a following compilation unit may depend.

Cross Compiler — A compiler that is able to generate machine code for a compuu.r system other than the computer system
hosting the compiler.

Declarative Part — A declarative pant is a sequence of declurations and related information such as subprogram bodies and
representation specifications that apply over a region of a program text,

Delimiter — A separator, such as a comma. semicolon. colon, or parenthesis is called a delimiter.

Derived Type — A derived type is a type whose operutions and set of values are taken from those of un existing “parent’ type.
Objects of a derived type arc not compatible with objects ol the pareat type.

Discrete Type = The set of valucs associuted with a discrete type is an ordered set of distinet, exact values. Discrete types and
values may.Ue used as array or entry indices. loop control parameters, and as choices in case Malements and record variants.
All integer and enumeration types are discrete.

. Discrimirant — A discriminant is a specially designated component of o record which allows the structure of 4 record to take on
a variety of different forms. The variations of the record may depend on the value of the discriminant.

Discriminant Constraint — A discriminant constraint specilies a value for cach discriminant component in a discriminated
record type or objuct.

DOD - The United States Deparntment of Detense.

y Efficiency — A goal of Software Engineering. Efficiency refens 1o the optimal use of available. resources. whnch ina
<‘ computational environment, appear primarily as time and space resources.

B-2

L4

Eluboration = The cluboration of declaration is the process by which the declarution achieves its elfect (such as the stlocation of
memory to an object declaration): this process accun during the caccution phase.

'ai‘. Embedded Computer ~ A computer that is included within, as un integral pant, a larger operational system ot item of

squipment. An embedded computer iy typically a smull, dedicated, Special purpose machine designed to pertorm § o~
functions (often control functions) of u larger system. Examples ure computers in industrial robotics equipment, nav S
systems, and process control devices.

Entity = Anything that may be referred to by name ix an Ada entity: objects. types. values and all propram units are all entities.

Entry - Entries are communications puths between tasks. Eatrics within & task asc calied just as subprograms are calied (from
outside the task containing the entry) and msy have parametcrs associated with them. At least one matching accept
statement appears in the task body for esch entry declared in the tusk specification.

Eaumeration Type = An enumeration type describes a set of discrete valuex which wre specified in the type declaration. Tnose
values must be cither valid identifiers or character liserals.

- Evaluation and Validation (E & V) Team — The E & V team is responsible for developing the techngues and wols which will -)
. - provide a capability 10 perform assessment of APSEs and determine cuonformunce of APSEs 1o the Common APSE lmerhce .
Set (CAIS).

Exception — An exception names an cvent that causes hormal propram execution to terminate. Usen can define exceptions
mesningful to their application, detect the occurrence of the exception condition. and hundle the cxception by executing a
section of program text in response. (See Exception Hundler)

Exception Handler — An exception handicr 1 that part of a progrum thut will be exccuted when an exce;;tion condition occurs.
If no exception handler is provided und an exception condition accuns, the program will be abnoemally terminated.

Expression = Any entity that has a value (including u function call) is conidered to be an expression. The torm is most often
applied 1o formulas that huve a numeric or logical value.

Generic Unit — A generic unit is a non-executable template for o subprogrum or u puckage. A gencric unit can accept matching
parameters that are either types. objecty. and/or subprograms. as specitied in the generic formal pant. An executable
C instance of this generic template cun be created by the provess ol generic insantiation.

High Order Language (HOL) ~ A progrumming language that crables 3 pmgmmmcr to write computer m\munot' ‘
English-like, readable form. rathcr thun in a complex nuchine lanpuage. Adu. COBOL. and FORTRAN are examples of -
high order languages.

Host Computer — A computer system upon which a programming environment is insalled to enable the ciicient development

of programs to be executed on specified tarpet computers. Host comiputers are typivally large: flexibie, multiprogramming
computers.

K

Index Constraint = An indcx constraint specities the upper and lower bounds for cach index range of an array type.

Indexed Component = An indexed COMPONENt ARNWS & COMPONCAL I J Artay OF an entry ina family of sk entnes.

' e,

Information Hiding — A principle of Soltwure Engincering. Information hiding refers 10 the process of making certain
implementation details insccessible, while allowing the interiuce o remain vissble. s purpose., alhied with the principle of.
abstraction, is 1o prevent high-level decisions from beaag based on low-level characteristios.

Instantiation ~ The process of causing an exceutable program unit 0 be created fnom a generic emplate by supplying a
matching actuul parameter for cach generic formal paramwter that appears in the Tonual part of the generic unit.

Integer Type — An integer type is a discrete type whose values represent all integer numbens within o specitied range. .

KAPSE Interface Toam (KIT) = A tcam of military and DOL) comtructor persannet. the KIT was organized by the AJPOw -
identify, examine, and set standardization policies for Kernel Ada Progamming Suppon Envirwnment (KAPSE) interfaces. -

The KIT is rexponsible for defining a sandurd set of KAPSE imtertaces to easure the interoperability of data and the
transportability of tools between conforming APSEs. (Sce KAPSE)

~

Kernel Ada Programming Support Eavironment (KAPSE) ~ A core group of programs that . ovides hasic functions in
support ol the bulunce of the Ada Programniing Support Eaviraaiment. and permis the transier of the APSE 10 difierent host
computer systems without madification to the KAPSE package badies,

(\- KAPSE Intertace Team from Industry and Academia (KITIA) = The counterpant w the KIT from industry and ac:

Lexical Unit ~ A lexical unit {or lexical clement) s an identibier, o number, a character o stnng literal, a deli Y oo’
comment. Bawcaily. it i the smallest meaningtul unit in the Ada language.

B-3

Library Unit = A library unit is a sepurately compilable member of u program library = either the declarution of a generic unit,
package or subprogram, a subprogram-body, or an instantiation of a generic unit, Within a given progran, library, the names
of all library units must be distinct identifiers.

Limited Type ~ A limited type is & type for which no predefined operutions are implicitly declared. A private type may be
limited by the inclusion of the reserved word "limited” in the type declaration. Al task types ure limited.
iteral ~ A literal states a value literally, that is, by mcans of letters andl digits. A literal is either numeric. enumeration.
string or churacter literul,

Localization = A principic of Software Enginecring. Localization refers to the grouping of logically related entities in the same
physical module, thereby localizing possible error.

Machine Language — The binary lunguage used (o communicate with a computer system. Euch compuier uses its own. unique
machine language.

Main Program — The subprogrum (usually a parsmeteriess procedure) which initially executes in an Ada aystem.

Minimal Ada Programming Support Environment (MAPSE) = A minimal group of software 1ooly suiTicient 10 enable
programmers to develop programs in Ada.

. Ml (Machine Independent Portion) — The purt of a compiler that contains components which are independent of the
charucteristics of the target computer. and so can be used in commun for many dilferent target computers = often called the
compiler “front cnd”.

" Model Number — A model number is un exuctly representable value of a floating point type. Arithmetic operations on flouting

point numbers are defined in terms of operations on the madel numben of the type. These operations will be the same on all
implementations of Ada.

Modiflability ~ A goal of Software Engincering. Madiliubility relers to a process of controlied change. whether in response to
an error or a change in requirements, in which introduced changes do not increase the complexity of the system.
Preservation of the original design structure should be an important consideration in achieving modifiability.

Modularity = A principle of Sofiware Engincering. Modularity can be defined as a purposeful structuring of resources. The
ideal module is small, has u single purpose. and has a well-define § interfuce,

Name — A namc is a symbol that stands for an entity: the name denutes the entity.

. Named Association = A numed association specifies the assaciation of an item with one or more positions in a list. by naming
the positions.

Object — An object contains a value. A program creates an ohject by claborating an ohject declaration or by evaluating an

allocator. In cither case, a type is specified for the object. and the object can contain values only nl that ~pcc|ﬁed type. An
object can be either a variable or a constant.

Object Program — The machinc lunguage output of a compiler when a source program is input.

Operation ~ An operation is an clementary action dircetly associated with one or more types. The operation is either implicitly
declared along with the type declaration, or it is an explicitly declared subprogram that has g parameter or result of the type.

Operator — An operator is an operation that has one or two operands. A unary operator is written belore a single operand; a
binary opcrutor is writtcn between two operands. This notation, called "infix™ ntation. is a special kind of function call.

Overloading — Overloading allows operators, subprograms, identificrs, and literals w have more than one meaning at different
points within the program text. An overloaded operator or subprogram is one which a user has defined 1o have a ditferent
meaning depending upon the type of parameter it can aceept. allowing the detinition of several subprograms with the same
pame. Ac overlouded cnumeration literul is an identificr that appears in the delinition of more than one cnumeration type.
Ada uses type information to select the correct literal or subprogram.

: Packuge — A package is a separately compiluble program unit (consisting of a specification and a bady) thut may contain related

types. objects, and subprograms that operate on objects of types defined in the same package spevitication. The visible pan
of a puckuge (the part of the specification that appean before the reserved word “private”) defines names thut may be
referenced exiernul to the package by means of 4 context clause: the private part contains internal declarations of types,
objects, and progrum units that are hidden trom the user. The hody of o package containe the inplementations of
subprograms which huve been specified in the visible part of the package.

Parameter ~ A purameter is associated with a subprogram, task entry. of gencric unit and is used o commaunicate with the
(corresponding program unit hody. A formal parameter s an identifier used 10 denote the parimeter within the subprogram
A body. tusk body, or zenerig unit body. An actiel paramdter is the entity assoctated wth the comresponding formal parameter

B-4

. jf

P e

at invocation or instantiation time. The made of a parwneter specilics whether the asscisted purameter may be used for .
input, output, or both. The association of uctual parumeten with fonmal parameten can be specitied by named axsociation.
by positional misociation, or by a combination of these methuous.,

Program Design Language (PDL) =~ An English-like antificial lunguage. sometimes called pscudo-code. used in docu /.\

the design of program unit bodies. The PDL used in the design of the Ada Languuge System (ALS) uses constructs si
1o those in the Ada language, thereby lucilituting the transition to final implementation.

Positional Association ~ A positional association specifics the association of un item with a pusition in a list, by using the same
position in the list.

Pragma ~ A pragma is an instruction to the compiler to perform actions outside the scope of prograny logic. such as interfaces
with other ianguages or compiler optimization.

Private Type = A private type ix a type which may be used outside the package in which it is Jeclured without knowing its |
internal data structure. A private type. which may only be declured in 8 package. is known vnly by its discriminants (if any)

and by the set of operations defined for it (in the same package xpecification). The only implicitly defined operations -

applicable to a private type are the tests {or equality and inequality and the axsignment operation, unless the type is limited.
in which case no operations are implicitly defined.

Procedure - (See Subprogram)

Program = A program is a collection of one or more compilation units which huve all been compiled relative to each other. One
of these compilution units must be a subprogram designated as the main program. which invokes other subprogram that are
declared in other compilation units.

Program Unit — A program unit is a genenc unit, a package., a subprogram, or u task unit.

Programming Enviroament ~ An intcgruted cullection of progrums that provide a wide vanety of prog‘mm development,

configuration munagement, project control. und maintenance functions. The Adu Propruamming Suppont Environment
(APSE) is an example of a specialized progratmming environment,

program library may be specitied in u context cluuse ut the stant of amnher compilation unit. -

Program Library — The compilation units that make up a program belong to a program library. A “library unit” trom the

Qualified Expression — A qualified expression further specifies the type of un expression by preceding the expression Iy
indication of its type or subtype. Qualification is necessury when. in its absence, the expresaion is ambiguous (pethaps as a
result of overloading).

Range — A runge is u contiguous set of values of a sealar type. A runge is speciticd by giving the lower and upper bounds of the
set of values.

Range Constraint — A runge constraint of u type specifies @ runpe. and therehy determines the st of values upplicable to the
type or subtype. '

Real Type ~ A real type is a type whose values cepresent approximiations w the real numbers. There are two Kinds: fixed point
types are specificd with absolute precisivn by specitying a maximum interval (delta) between values of the type: floating
point types arc speciticd with relutive precision expressed as o number of sigmificant decimal digits. -

Rehostability — The capubility of a propramming eaviconment, such as an APSE, 1o be amwed o0 a different host \.omputer
without mujor maditication. Rehostability is achicved by the concentration of all ot dependencies in the KAPSE and in
the runtime support librarics. (See Runtime Support Libraries)

Reliabilit; .= This goa! of Softwarc Engincering refer to the ability of a sysem w operate without human intervention for Img
periods of time. Relisbility must be u prime consideration carly in the duugm itmay mot be akded at a bater time,

Renaming Declaration = A renaming decluration declarcs another name: for an entity. " -

Rendezvous ~ A rendezvous is the interuction that accurs hetween twa paruliel tasks when one task has called an emry of the
other task. and a curresponding acvep? statemient is being executed by the other ask on behalt of the calling task.

Representation Clause — A representation cluuse optionully specities the umderlying representation and/or addresses for data
and program units,

Retargetability = The cupability of a programming cavironment. such as an APSE, to be made to produce proggams for
different target envirvnments without major nudification. Retarpetabality is enhanced by denigning its basic fune o\-,
as machine independent as pinsible.

~

3

ll.-'~—”

Runtime Support Library (RSL) — The componcnt of a compiler back end thut provides the additional suppon functions
required for the execution of programs on a specificd turget computer. Since cuch type of tarpet computer requires its own
supporting functions, a unique runtime support library is reyuired for cach type of turget computer.

. alar Type = A scaler type is u type whose values huve no components. integer, real und enumeration types are scalar. C
i Q@ Further, the values of & scalar type ure ordercd. e

Scope — The scope of a declaration is that region of text over which the declaration has effect.

Selected Component — A seiected component is composed of the nume of the component, preceded by the name of the structure

of which it is a component. Selectcd components are used to denote record components, task entrics, and objects designated
by access values.

Software Engineering — The methods and technigues uved in the development of efficient, reliablc. and muintuinable computer
software.

Software Portablility = The capability of a progrum to be moved betwecn different computer systems without modification.
Software portability is one of the major gouls of the Ada language implementation.

. Source Program — A program written in a high order language (such as Adu) for input to a compiler. (See Object Program) v
Statement — A statement specifies one or more actions to he performed during the execution of a program.

Static Expression — A static expression is an expression whose value does not depend on the execution of the program in which
it is contained.

Steelman — The DOD document that specifies the technical and qualitative requirements for the Ada language.
Stoneman - The DOD document that specifies the technical and qualitative reyuirements for implementating un APSE.

Subprogram — A subprogram is an executable prupram unit that may have parameters for communication between the
subprogram and its invoking program unit. A subprogram decturation specities the name of the subprogram and lists its
formal parameters. The hody of ua subprogram spetifies its execution. A subprogram can be cither o procedure, which
performs a sequence of stutements and is invoked by a procedure call sawement., or a function. which retums a value (catled
the result), and so a function call is not o . tatement, but an expression. ‘The subprogram call specities the actual parameters
that are to be associated with the formal parameters.))

N

~ " Subtype = A subtype of a type (called the parent type) charucterizes a subset of the values of the type. The bounds ot the subset (
are determined by the constraint on the type. The sct ol operations applicable to a subtype are the sume as that applicable to
the parent type. Objects of a subtype arc compatibic with objects of the parent type.

Software Life Cycle = The span of time over which a software system is in existence, starting with its 1irst conception, and
ending with its last usc. The software life cycle is usually divided into phases, such as Analysis, Reyuirements Definition,
Design, Code, Validation, und Operation and Muintenance.

Target Computer — A computcr. usually embedded in an operational system. that is desigaated o receive programs in its
native machine language from oace or more host computers. Target computers are typically small, special-putpose
machines.

Task — A task is a program unit that operates in parallel with other program units. It consists of a task specification (which
specifies the nume of the task and the namics and formal parameters of ity entriesk, and a task body . which defines its
execution.

Task Type — A task type declaration is a type decluration similar in form 10 u task specification that perimits the subsequent
" declaration of any number of identical task units. A value of i taxk type designates a task. Al task types are limited types.

Type — A type characterizes a set of valucs and a sct of operations spplicable to thoxe values. A type definition is a language
. construct thut defir.cs type. A particular type is cither an acvess type. un arruy type. a private type. @ necord type. a scalar
. type. or a task type.

Understandability = This goal of Software Engincering must be met in order for any of the other goals to de achieved. The
understandability of a system is a measure of how well it reflects a natural view of the weorld,

Uniformity = A principle of Sotiware Engincering that refers (o the consistency of potation within g given system. In order to
be undenstandable, modules should be free from unnccessary differences.

. se Clause — A unc clause is a context clause that allows direct reference to declarations that appear in the visible pans off :
K_ packages named in & with clausc. . (

B-6

Variaat Part = A variant part of a record specifiex altermative recond compuonents. depending on o discriminant of the record.
o Bach value of the discriminant establishex a particular alternative of the variant purt.

Q Visibllity = At a given point in the progrum text, the decluration ol an entily ix directly visible if it can be reference its
simple name. The declaration is "visible by selection” is it can be referenced in 8 named assuciation or as a
component. - |

With Clause — A with clause ix a context clause that allows reterence (hy expanded name) to declarations thut appear in the
visidle parts of named packages. A with cluuse also allows direct refercnce to other named librury units. such as generic .
units and subprograms.

-
!

.

-

-

B-7 .

STUDENT RANDOUT

Technical Training

' OBJECT ORIENTED DESIGN

7
oy i

> &
< 4 - {
<& ' -3
4* *4
W

USAF TECHNICAL TRAINING SCHOOL
' 3390th Technical Training Group
Keesler Air Force Base, Mississippi

DO NOT USE ON THE . OB

Designed For ATC Course Use

E30AR4916 003
E30AR4924 004
E30AR4924 003
E40S8T4916 003
E40ST4924 020
E40ST4924 021
SOP 886

_NGL - N/A

-4

3300 TECHNICAL TRAINING WINC
3390 TECEANICAL TRAINING GROOP
KEESLER AIR FORCE BASE, MISSISSIPPI

PHILOSOPHY:

The philosophy of the wing emerges from a deep concern for individ-
usl Air Porce men and women and the need to provide highly trzined
and motivated personnel to sustain the wmission of the Air Force.
We believe the abilities, worth, self-respect, and dignity of each
student must be fully recogniszed; we believe each must dbe provided
the opportunity for the pursuit and wmastery of an occupational
specialty to the full extent of his or her capabilities and aspira-
tions, and is of immediate and continuing benefit to the individ-
ual, the Air Porce, and the country. To these ends, wve provide
opportunities for individual development of initial technical
proficiencies, on-the-job training in chsllenging job assignments,
and follow=on grovth as supervisors. In support of this individual
development, and to facilitate maximum growth of its students, the
ving encourages and supports the professional development of its
faculty and administrators, and actively ©promotes innovation
through rtesearch and the sharing of concepcs and materials with
other educational institutions.

Supersedes ATC 90P 886, June 1986

000t

a

jo— m_-—lv_a

- e = e

< fa— SIE1 —of

N

NDIS30

(1 T4 ¥4

JWA) 34171 JYYMLICS

NJIS3a a3nviia -
NJISIQ AHYNININIYD —

N9ISIQ TYNOILIOYAL

SOAI}DIIDN wpibougd —

sdoyg gop —
mto:o;o_n_ WolsAS —

NDOISHA AMVNINITANd

®

suo1}diuosa pIpQg —
- synoAo 9|4 — .

mtoco\.so_..._ wipiboud —

NDISHJ qdTIIVIAd

1112

oII.H/V
ﬂ\

NDIS3a 01 HOVOUddY TYNOILIOVYL

_ 1

@

~

o ;

"‘@
,._,';

N9IS30/ S INIWIYINDIY -
 ¥3INDISIa -
A901000HLIN —
JUNLINYLS NDISIA —
SIOVAUIINI —

C3NIL -

N9IS3Q TWNOILIYYL HLIM SWI190Yd

. | i -
’

11914

%351 N9IS3
W11 INIW4013A30 W01
, L -
N9IS3a TYNOILIQVYL HLIM SWI1804d

l{»r....

pEd

®)

D

 sHouH3 -
SNOILYDIINVY 3WIL

s} uol)pibajul SaSDaIdU| —

. paijjuspl.aq
JOU [{IM SJ0JJd }DY} 90UDYD S8SDIIOU| —
A}111gDIja4 S8sD8Idd(] —

LU9)SAS

Buise) UDY} J9Y}DJ S10449 ubisap
butbbngap juads si mrc; jo Ayolop —

(HONILSHL J00d)
SNOLLVOIAINVY HNIL

°

,f..«._ 2 i ‘s - .

. | >__om. 00} 9pDW SI
ubisep Jpjnoijupd D 0} JUBWHWWOY —

10

| ubisap
Bunopioa yuads s| awiy 8331} 00 —

(NOILLVAITVA NDISHd)
| mzo§<oE§<m HNLL |

siue

SIIVAUILNI —
NI -

N9ISIA TYNOLLIGYYL HLIM SW3180Ud
®

N
~——

(@

11

®

<

31avI4IGON LON
IN3I0I443 LON
31813y 10N
318YANYLSYIANN LON

SI LI "HYOJHYAHL -WAT19048d
LOA'TIHY LNSHOA HINLONYLS NDISHA

NOISAA TVNOILIAVAL HLIM SHATIH0Nd

'

12

11 {14

HOIS3a

TIIHM

N~

@

13

dalNvA ¥ISA JuL 1ven

SO~

1SAIVNY ¥01IN3S
iBl A% QaND1siq SV

(3

£1iS ,s¥isn SUANNVEICUL
AUl 1Y Q3T11VISNI SV dH1 A% a320a0¥d SV

WOSNOdS 1d3royq
ZHL A% Q38040¥4 SV 2HL N1 QF141224S sV

NS - N—’

1sand3av 123rowd -

’ kﬂ\s& i :g,vw

o

14

solbojopoylow
~|buOI}OuUN} Ul JuBWIYOUSIUT —

0} paJ4aypo 4O Dmm.: jou
si Abojopoyjew paul|diosip—|idM —

AD0TOTOHLAN

NDISHJ TVNOILLIAVY.L HLIM SWATH0dd

g

15

Sw9)sAs ppy J10j 9ypludouddo JoN —
wia3sAs uodn ain3onJys |DIdYID UD dsodw| —
sabuobys 0} m>_mc.oam8 Hoz -

Aoua1inouod |pJN}DU Sssaldxa Jou 0Q —

-Buipiy UoIDWLIOUI PUD

uOoI130DJ}SqD DIDP SSauppD Aj9}pnbopo jou oG —

SHIDOTOAOHLANW TVNOILONNA

16

| apo2
931| $%00] 3Py} ubisap D JO sISA|DUD
oy!| §400] }bY) ubisap D ul S}NS3Y —

19p0d 40 /puD }sAjpup
Ajjonsn si ubisep s20p DY} UOSId3d —

pauljop—||aM SI 9|0y —

AANDISAA

NOIsdd TVNOLLIAVYL HLIM SWETE0dd

(@

17

pa}DpI|DA AjnJ} 8q UDD DY}
sjuawalinbal Ul S}NS8J puUD POISPISUOD
oq 0} psau 1Dy} saAijbulayp ubisap

JO Jogquwinu ay} Sa2Npal UoI}PZIPIDPUDIS

mm,\foc_mwz ubisag N

sjuawalinbay

VIWIETIA NOISAd/SINANAIINDTY
NOISHJ TVNOILIAVI.L HLIM SWATI0dd

18

<':onouny waysks
oly10ads jo juswl||ijing o3
o1pludosddp saunjonys DIDP
puD Swyjobip J0 UOII3ISS QATIVLAA

sao9ld j0 U0I13O3UUOIIBUl
puD 94N}ONJ}S 2IDMHOS

D420 Buy O uoRIUboORY IVENLOALIHOYV
NVNAOHLIN

'SSEDOYUd NDISHA

19

20 -

Py NI NDISIA WYYI0Ud

Wa}SAS [0J43U0) uoijDINDbIUCY *
w931sAg (043u0) Joalold *
Wwa)sSAg uolpjuUBawWINd0(g *

21

yuswuoJiAue Poddns ayy jo LDd _
~ wD?a) yuswdo|aAsp O pub
[DNPIAIpUI JO AjAiRonpoud eroadw) —

SSAD0dd NOISHA ¥0d STOOL QALVHOLAY

\, ‘
g) AR ’
] R - ’ ‘ . ot A
e . o .)
- r 4 s . .

saunjpa} buunjonuys Jusiolyyns
uipjuod jou op sabonbupj jpuonipoa} —

O_OOI_ ___®>®_|..r_@__l_: *

S90DJJ9JU| *
91N}ONJ}S 94DM}JOS *

jo buiyoayd pa}pwolno 10j SMO|lY — .

ubisap uby) Jay3pi 9pod 0} sI Aouspus| —

NOISTA HNINNA IOVAONYT V DNISN

o

22

|00}
ubisop D sD Jo|IdWOD 8SN UD) —

buunjonuys
uo siI abonbup| sy} Jo sisbydwy —

udisa(surang epy

®

23

£

11174

14d &pY —
ePY NI NDISIA WYUD0Yd

24

S6lt

dIHSYINMO

1200044 INIAIINOD

INIYIINIONT JYYMLI40S

S1ING0Y¥d 318YSNIY

— A9010NHI31
71949 N
$3N1Ivdd !
ALIYND 19NA0Yd = . $1001
— INIUIINIONT JuVMLIOS [T
19n004d NAYSN NYIOOW 314034
1410 55170084 1NdNI

25

INIHNIANIAZY ANINAN1I AN

$34dA1l Viva °®pYV
‘INANINIATE S8M01883¥4x3
HOILOVE1SYY NOILOVILSEY
XSVINAHNGD ANVININKOD
viva [T ERTTF]

. XY1NiS ¥aum1

-

ONIASYL
‘ORIENLONELS

ONIZINYIUO

XVLINLS
33100

a3ilaowvi r11nd
SNO1S3a q3i11viia

1393Vl 40
INFAN3dIAN]I SNO1IS2a
TVNOI11ONNA a311Viia

SdIHSNOILVIAX
any si¥va md1sada

LIVELNOD ¥3Sn

asodund

% 13A31

€ 13A21

T T3A31

1 T3A31

26

$3dAl
viva 31VAlid
S3¥NLONAULS
viva iJvilsev S11Vd TVINAi1d0¥4d
AYVINZHHOD . A¥VINZHROD
vylva NO110NNd

AVINAS WIRAL

op °‘3dadoe
$%] 1)
Asel
uorjlsung
(uays 3Tx?
‘103
‘atiya) doog
aswd
uwayl jt
uidaq
23viedas st
LApoq

23eyowd

) XVINAS
¥31i00

-\

-
L

S4IHSNOILIVTAN
GRY Si¥vd WO183d

LOVU1lN0D ¥AsSn

isodand

27

T 13A11

1 13A31

J® asn ‘ao0j
JurISVOD
s1171p ‘ewalap
2d&L3 s 8320w
9443 paatridp
2dLaqns

28u3z1
Awaxe
p10331

$34dA1l vViva ®pv

viva

- swdpad

Aeyap

JITUTIVIIY

Jao0qQe

ss1ea ‘vol3daoxs

as{? 10
uay3 puw
sq®

30x ‘pus ‘a0

pom ‘maz

28uda

s .. .\ ..l -* -.u

NOILINNd

XVINiS ¥aAMl

30919

XViIRAS.
¥3A100

HOI1lYINANATANI HOd
igvie ‘G3lriaowvi 171aa
SNO1IsS3ad daliviia

1394v: 30
INIANIJIANT SNDISHA
IVNOILONNE 4311IViIIG

25041404

¥ 13Ad1

€ 13A37

Level 1:

1.

(User Contract)

CPCI Orgzanizing Syntax

package = ig
== Intended State Machine:
-= Transition Functions:

== State Data:

end ~ 3

Functional Spacification

0.8.,
-- <Receive AUTODIN Segaments>

CPC Designations

procedure - (....) ; .

with = ; use - ;

Commented Abstract Declarations of‘§tate Data o

=~ AAAA : ABSTRACT_FILE;

- == XXXX : STACK;

29

Level 2: (besign Parte and Relationships)

1. CPC Organizing Syntax "’)
package body = 18 ..viviiiiiricnnienans
procedure - (....) is separate;
procedure = (....) is begin end - ;

L]

e

a
'

-saa! - =£££x - (-ooo) HERR R 2&! - 3) . {
task bod! - i_ ..oonnccooooooags - 3
.cc.zt - (ouoo) ££ """';'.221 - 3 :

2. CPC Sctructuring Synctax (single level)

bt‘in sessssress aund H

if ..ve0.0 then ,... €else> end if ;

-

T CABE c.i.s 18 ... WhEB J.e0 D L... @ case ;

for ...vs. loo cesessesses end 1002 ’

wvhile B 1Y I 11X |
®
1o00p ¢«v.uvs <gxit when> ..., gnd loop ; _ e

3. Intended Function Commentary

b
-]
(]

¢.8.,
«=(Send massage to user>

4, Functional Abstraction

..‘I’
SORT (A_TABLE);

GET_HEAD (A_LIST); ' .

30

. ——
o ——————

5. Procedural Calls to Lower Units
e.8.,
MRX_RECEIVING (A_AUTORECS);

6.

Data Abstractions and Anonymous Data _tructures

‘.8.’
package - is new STRING_FACILITY (type name);

(string, stack, queue, sequence, set, list)

i1

Level 3: (Detailed Design, Independent of Target)

1. Data Tests and Operations Qq

Logical expressions (and, or, xor)

Relational expressions (=, /=, <, <=, >, >=)

Numerical expressions

° adding (+, -, &) -
° unary (¢, -, not). .
° multiplying (*, /, -;d, ren) i}
o exponentiation (%#) i

Set membership expressions (in, not in)

2. ‘ Data Definition

Predefined Ada data types (INTEGER, BOOLEAN,
CHARACTER, FLOAT)

enumerated types (type -~ is (-,-,-) ;)

array types (type - ig.arraz (....) of = 3)

record types (type - is record end recorxrd $)

3. Predefined Array Attributes
First |
Last
Length

Range

32

Fany

Level 4: (Detailed, Concrete Designs, Fully Targeted

to Ada)

1. Exception Handling

exception
when
raise

2. Data Refinement

subtype
derived type -
access type
constant
delta

digits

range

renames

all

array slice

3. Tasking Refinements

terminate
select
abort
delay

4. Representation Specification

for
use
at

5. Pragmas (Special Directives)

33

Proc‘dur. LI I BN B I I B N) (.0.'....: in; .'.l....: °.‘t) i.

begin

‘nd '.........‘;

34

Lol

procedure GET TEXT (A_MESSAGE : im STRING) is
-={Build ARIZA from incoming Message>
begin :

end GET_TEXT;

i1
Nt

procedure GET_TEXT (A_MESSAGE : im STRING) is
«=<Build AREA from 1nconxn; Message>

type TEXT is array (1..100) of CHARACTER;
AREA : TEXT;
bagin

LI I

end GET_TEXT;

36

@

procedure GET_TEXT (A_MESSAGE : in STRING) is
-=¢Build AREA from incoming Message’
type TEXT is array (1..100) of CHARACTER;

AREA : TEXT;
begin

for

locp

end loop;

end GET_TEXT;

37

procedure GET_TEXT (A_MESSAGE : im STRING) is
~-<Build AREA from incoming Messsge>

type TEXT is array (1..100) of CHARACTER;
AREA :

:+ TEXT;
begin
for .
INDEX im AREA'RANGE
loop

«={Move message into AREA, blank i.u» feedsd
it

ch --<'000ouo.ono--o..a.-ouo----co-)

then
slse

end if;
end loop;

end GET_TEXT;

38

R R " w——— = Y W - -

procedure GET_TEXT (A_MESSAGE : im STRING) is
-={Build AREA from incoming Message’>"
type TEXT is array (1..100) of CRARACTER;

AREA : TEXT;
begin
for

INDEX in AREA'RANGE

loo0p
it

-=-{Move message into AllA,.lenk line feeds>

CD --<{line fesd character>

thean
AREA (INDEX)
elses
AREA (INDEX)
end if;
end loop;
end GET_TEXT;

:® MESSAGE (INDEX);

39

_ Rl tvl ol abradiind Wb b « ~ok

ApoQ pup uoljpoijioads
jo uonpjidwod ajpindag —

swpiboudgng —
SYSD| —
seboyond —

ST00], ULIN}ONI}S WID)SAS 9.1eM}]OS epY

NOISHA TVINLIHLIHDYV

(-]
-

SIVNTIINQYLDTT3 pue

‘(ONIMLS 300 : FOVSSIN) uo<mmu_zu>_uoum aunpsoo.d

((ONIYLS Ul :

uo<mmu3 39VSSIW ONIS a4npadoid
s1 VW OINOY 10313 mme_ooa

41

YINVA pue

‘(A1dINAN) FOVSSIW IANFOIY
:(,obossaw b s) aJaH,,) JOVSSIN ANIS

uibaq
S(L1771) ONRILS - AN1d3N AN

st ¥J VN 24npadoud
“IVINJINOY1D313 9sn
TIVWOINONLOTTI Yatm

JOVSS3 Enu_\/_mowm

A9VSSINANIS

|l _~

VN OINOYLOT T

‘a3 .
v g

SERINAA

43

;,_...i..,_.;
.o/

spungng —

Apoq pub uol1}D2I1}109ds
jo uonojidwod ajpindag —

swpJaboidgng —
SYSD| —
sobo)ond — _

s[oo], urin}onilg wa}sAg aIemljos epy

NOISEA TYANLOALIHOTVY

b4

TR v e o b

*H3LNOY FOVSSIN PUd
:dooj pua

‘(39vSS3N) ISVSSINALNOY
'(39YSSAN) FOVSSINY 13D

dooj

uibaq

‘930.10dos s (ONIYLS Y! : JOVSSIN) JOVSSIW ILNOY ainpado.d
‘21010das €1 (ONRILS IO : FIVYSSIN) FOVSSIN V13D aanpaooad

(21 " 1) ONIYLS : 39VSSIN
s ¥3LNOY IDVSSIN 24npadold

43

JOVSSIN ILNOY

JOVSSIN Y130

AILNOY IOVSSIN

46

‘JOVSSINY 13D PuUs

'(,, <= ISV1,39VSSIN " €1)
=: (1SY1,3OVSS3IN " €1) FOVSSIN
¢, obpssap 3891, =: (g1 = 1) JOVSSIN

uibeq

s1 (ONIYLS IN0-: JOVSSIN) FOVSSINVY L3O 9.inpadoid
(M3LNOYIIVSSIN) 93pIDdss

.

47

-JOVSSIW ILNOY pua
| ‘linu

m (peagnms Apuauind) ——
.. 819y 906 woiboidgns yo uonbruswadw) ——

“ | uibaq
m

§ S! (ONIYLS Ut : 39VYSSIW) JOVSSINILNOY 34npssoid
h (Y3LNOY39VSSIN) 930JDdos

48

mk_ﬁmEEon_ —
buidAy buonys —

UOoTTUIJa(] 99elIaiU]

NOISHA TVINLOALIHDYV

49

S8JN}ONJ}S |0JjU0) —

saimonuys buidAy yory —

NDISHA qA'TIV.L4d

30

-, gmne tam w o
.

%@

0O

NDISAA QALNAINO 1OArd0

31

suonolsadQ puo
s308({qQ pHOM—|D3Y

spelqo
PUOM—|D3Y

S}nsay wyjobly D}DQ
PlHOM—|DaY

AOVdS WATHONd

52

7~ Wypobly

Jaindwo)

mco_.aoLmao pup
syoelqQ abonbuo

p3pQ INdINQ buiwwpibosd

dOVdS NOILLNYIOS

33

30vdS NOLLNT0S

JIVdS W31803d

3
m -
v . _
M VIVO 1Nd1N0 NHLINODTY SNOLLVY3dO
1 ONY S193r80
3
0
3

NOLUVIIJNAINI NCUVINISI¥d3 \
m__ SHINNVUI0Y
o
o p
M $193rg0 SNOLLV¥3d0
1 SO— ONV S103r80
v
3
N —

ad
"

Joi1ndwon

p

HOM [D3Y

suol}piadQ

puDp D}D(]

35

P9]USII0 9UNFOS}YIID
UDY)} JaYy}DJ PajualIo UOI}OD A||DJaUdY *

swa|qoid ajdwis Jo) saunjonss ajdwis *

saibojopoyjaw
ubisap usapows 03} Jolud padojarsQ *

| SWALSAS FYVMILIOS 40
i NDISAQ-AHL SLOAIAV SHOVNONVT
HNINWYEH0¥d 40 AD0TOJOL THL

B

56

Adl ~ JILVAMO

86109V | NVy1404
8GS61L — ¥S61
~ |swoiboidqgng
\ /
\ Ji
- SHHOVNDNVI

NOILVHINID INODIS NV
LSYId 40 ADOT0dOL

au , e . m Q\w

57

vaSvd |
108090 09 1091V
061 — 6G61
swoibosdqng
// \
N /
R
SHOVNIONVI

NOILVMANAD QUIHL ANV
ANODES 40 AD0T0dOL

38

.- gobpnbup| A|quassp Aj3sow 3s

- ALMgvin3ay HOIH *
. "SINIVYLSNOD VOISAHd *
JONVYHO SNONNILNOO *
Jd3aANT—9NO1 *

JOdV1 *

SOILSINALOVIVHD WHLSAS AIaaadand

59

SHOVNINV']
ATHNASSY 40 AD0°10d0L

UOI}DZIjDI07] *
AyIDINPO *

- Buipiy uopbwuioju| *
UOI}ODIISAY *

sajdioulid Buusauibul aipmyog spoddng —

NDISAAQ QAINATNO LOALEO

62

SUOI}D}IWIT XDJUAG BWODIBAQ *
sajdiould 35 UIDIT *

opy Ul *

:sjuapmS sdjsH —

NDISEA GEINATIO LOAL

63

20nds
wajqo.ad wouy s3oalqo jo sspyd .10 }23lqo
UD S9)j0Uap WI)SAS 3y} Ul 3|Npow. 4203

ubiseq pejusiiQ Joslqo =

uoisioap ubisap b sapiy sjnpow yoo3
uoiisodwiodsa(] souibgd x

- 94N10NJ}s DIDP

ndino o} paddow aunjonis Djop 1nduy
ubisag @4njon.ays Eoo. *

ss2v0.d ||p4BA0
ay) ul da3s Joflpw D sdj0UIP 3|NPOW YIDJ]

ubiseq painjonuys umoqg doj *

SO[NPON Oul
wa)sAg e Fursodwodd(q 10] eLISILI)

64

yoalgo yooas juswa|dw| *

syoolgo
Jayjo 03 uoipjal ul AJiIqISIA S}1 puD

199[go YoDa JO S92DI33Ul 3Y} ysi|gois3y *

y0algo yooa jo paJinbal

suol}pbiado pup uo suolypJiado Ajiyuep| *

co3nqUO 18} pUD S308(q0 AJ3uap] *

| HOVOdddV TVIINHD
NOISHd CALNHINO LOArdo

65

s109(qo Jay)o
AQ pup jG AUHQISIA PRIOLIISSL SDH *

9WDU D SDH *
$309/qo JO SSDJO SWOS JO d0UD)SU| *

Y AQ pasn pup }I
10} vw::mv Suo13pJado JO }9S D SDH %

9)}D}S D SDH =*

LOULEO0 NV J0 SOILSIMHALOVYVHD

66

\./

\ \[—

/\ﬂl....q

Od JNINITY

-1

NVHO0ddENSY

67

pauljap A||po1ipis st AN|IqISIA
$109/q0 JO SaWDU SD 3AI9S S3|QDIIDA

sadA} a)pAiud pajiwi| 4o 91pALId Hodxa yoiym
sabbyopd Aq pajouap aip s}03[/go Jo s9S8SD|)

sadA) 21p0ALId pajiwi| JO
910AlLd JO saoup}sul Aq pajouap aip s}03lqQ

epy ul (qOO Suissoaadxy

68

d0d

N

HSNd

JIASNHIVLS

Qo<hm.<

MOVLIS HIO3UNI

AONIAN3d30
NOLLVTIdNOD

69

) DIOVISTYIOILNI pue
aJsy paulep ——
S MOVLS'V Jo uonpjuswajduw) —-

el o cavn e

9)DAILId

‘(MOVLISV N0 Ul : J0 340
*4393INI N0 : W3LI) dOd 84npado.d

'(MOVLSV 30 Ui : NO
HIOIINI UL W3 L) HSNd 94npadoud

:930ALd pajiw st YOVISTY 2dA)

. 90JN0Sa) ——
%ID3s YIDJIN} up sauyep aboyood siyp ——

SI MOV1S 393Nt 9b0>00d

70

*HISNAHIVIS pus

{(NOVLISHNOA <= 407340 "¥IBNNNY) dOd
‘(MOVLSUNOA <= NO ‘00l) HSNd
{(MOVLS"AW <= NO '0S) HSNd

uibaq
HA9FINI: H3ENNNY

'MOVISTY : MOViS HNOA
IMOVISY i MOVISAN

s1 Y3SN™MOVLS s4npadoud
‘MOVLIS HIDILNI 9snh
IMOVLIS HIOZLINI UM

71

package B3_1 ie
type NUMBERS is ramge 0 .. 99; .
procedure TAKE (A_WUMBER : eut NUNBERS); .
procedeure SERAVE (NUMBER : {im NUNBERS); y
fuactioa NOW_SERVING retura MNUMBERS; :
end B_R;

package body B_R is

SERV_A_MATIC : NUMBERS := 1;

procedure TAKE (A_MWUMBER : emt NUNBERS) ie |

begie

A_NUNBER :® STRV_A_NATIC;

SERV_A_MATIC := SERV_A_NATIC + 1;
eni TAKE; ‘, \
procedere SERVE (MUMBER : is WUNBERS) is separate; -
fuactiom WOVW_SERVING returs NUMBEIRS is aseparate;

end B_R;
.

12

with B_K;
use B_R;
s precedure ICE_CREAN io

YOUR_MNUMBER : WUNBERS;

begin

TAKE (YOU&_IU!D!!):
leop

i2 WOW_SERVING = YOUR_NUMBIR then
SERVE (YOUR_NUMBER);
exit;
end {if;
end loep;

end ICI_CI!AI;

13

vith B_R;
use B R; .
precedure ICZ_CREAN is '

TOUR. HUMBER : NUMBERS;

bagin

TAKE (YOU!_IUIIII);
leop

it NOW_SERVING = YOUR_NUMBER them
SERVE (!00!_!0!!!!):
exit;

slce

!OU!_lUllll . !OU!_IUHI!I - 1;
. end L€;

end leep;

end ICE_CREAN;

14

@

&g

package B_1 is

type NUMBEIRS is private;
procedure TAKE (A_MNUMBER : out NUNBERS);

procedure SERVE (NUMBER : ia NUMBERS);
function NOW_SERVING returam NUMBERS;

private
type NUMBERE is ramge 0 .. 99;

eud B_R;

15

vith B_R;
use B_1R;
procedure ICE_CREAM is

YOUR_NUMBER : NUMBERS;

begin

TAKE (YOUR_NUMBER);
loop

if NOW_SERVING = YOUR_MUMBER them
SEAVE (YOU!_!UHIII);
exit;

else

YOUR_NUMBER := MOW_SERVING;
end if;
snd loop;

end ICE_CREAN;

76

package B_R is
type NUMBERS is limited privace;

procedure TAKE (A_NUMBER : out NUMBERS);

procedure SERVE (NUMBER : im NUMBERS);

function NOW_SERVING retura NUMBERS;

functiom "e" (LEFT, RIGHT : im NUMBERS)
retura BOOLEAN;

function CLOSE_ENOUGH (A_NUMBER : in NUMBERS)

returs BOOLEAN;
private

type NUMBERS is range 0 .. 39;

vith B_R;
use B_R;
procedure ICE_CREAM i»

YOUR_NUMBER : NUMBERS;

procedure GO_TO_DQ is separate;

bogin_

TAKE (YOUR_NUMBER);

if NOW_SERVING = YOUR NUMBER thes

SERVE (YOUR_MUMBER);

elsif CLOSE_EMOUGHE (YOUR_NUMBER) them

vhile NOW_SERVING l= YOUR_NUMBER loop
== wait your turn

) null;
end loop;

SERVE (YOUR_NUMBER);

else
GO_T0_DQ;
end if;

eud ICE_CREANM;

78

s.onoado pup s303(do ay) jusawsjdwy| —
syo9(qo

ay) buowp Sa0DId3UIl Ysi|gD}s] —

s)0afqo ay3 uo suonoiado Ajyuap| —

SERUIS IR A
pup }saJajul jo s3dalqo Ajjuap| —
>mm*og_m.os* 8Z||DW.I04 O°S
ABajp.ys |pwuojul up dojersq 0O°C
we|qoad sy} euijeq 01

SAALS NDISEd CILNATIO LOALEO

79

-S9ADA| S} 1UN02 ‘93.4} Aubuiq D UBAIY

sousuas ajbuis b ul wa|qosd LIS 17|

wajqoid ay} sulyeg 0°|

80

81

@

£
£y
¥

(33419NSTIHOIY) SIAVITIOHIGNNN
+ (IF1ANSL4TT) SIAVITIO HIGNNN

= (334L) SIAVITIOYIGNNN

S33419NS OML
40 SISISNOD 33¥1 JHL 41 —

I = (3341) SIAVITIONIGNNN
AV3TV SI 33YL IHL 41 -

SHAVHT DNILNNOD

82

‘JUIOCMBIA Wa}SAs
9y} woJj} aq ji!m aAoadsiad ay|

aAnoadsiad >wmu.”.‘obm .:m__anu 1°7

/Baipa;s |pwaojul uo dojeaeq 0°C

83

"S9AD9| Y} JO 1unod -3y} Aoydsip ‘Aydwa s ajid ayj aouQ

‘9|id ay) uo xopq way) 3nd pup sasnqgns Jybu pup)8 s

ojul @a.4) ay} lijds ‘saasigns OM) jO S)SISUOD PDI)SUI ING
joaj 8jbuis o jou .m_ 994} 9y} §| ‘9943 10y} AOMD MOy}
puD J23junod JD3| 9y} JuswaLdu; uay) ‘Joa| ajbuis o jo
S}SISUO0D 3aJ} ay} §| Y oEono pup ajid ay} }JO 9943 D
aMD} Ajpajoeda. .b_an Jou si ajid ayy sp buo] sy ‘0.9z
0} 39S A||DIjIul S| S9AD3| 8y} 30 JuNnod ay) ‘ajid Aydwa
3y} uo }1 ind puo aas} D amm ‘Aiioiu *pajunod uaaq

194 jJ0u aADY DY) 991} .m_: jJo syod ay) jo sjid b daayy

84

o
M

ol & ~
G

85

87

-S5ADS] 2y Jo Junod ay) Apjdsip ‘Aydwa s) 3jid ayy asuQ
3Nd ayj uo }opq WY} Jnd pup SISIIQNS JYbLI pup }3| SY
" oyu1 33 ayy yyds FIIIGNS OM] JO S}SISUOD PDa}sSUL INg
JO3[3|DUIS D Jou S| 3813 aY3 J| 5513 10y} ADMD MOJY)
pup JSJUROD JOJ] 8y} Juawaldul uayy ‘Jos] S[bUIS D 4o

S}SISU0D 3913 8y} J| “J1 SUILWIDXd puD 21d 8y} JJo 9813 D

9D} Ajpajpadal .b.ac._m j0U sI J[[d DY) so buo| sy -ousz
0} s A|jp)yiui S| S3ADST SUY JO JUNOD 3y} -31d A
ay) uo Jrind puo 33T} 0 106 ‘AjjoiIul "paUNOI UA3q
124 J0u ADY DY) FTTFT YT JO SHOA oY) Jo I D daa))

INNOD VAT
Jd

mmmbm_:ml_.I.w_w_ ‘33419NS 1437 3341

LSHYHLNI 40 SLOUrdo

"S9AD3| 9y} JO Junod ayj AD|dSIp ‘AJdWS s) a)1d ay} aouQ

*a|id ay} uo ¥50q way} Id pup saa.1qns bu pup) sy

ojul 994} 9y} Ji|dS ‘S3311GNS OM] JO SISISUOD pDI)Sul Inq

joo) 9|buis D Jou s| 9943 9y} j| "3} 10y} ADMD MOIY]

PUD J3junod jD3) 3y} JUSLUBIOUI U3y} ‘jps| 9|buIsS D Jo

S}SISUOD 934} 9y} §| "} SUiWDbXa pup 3jid auy JJo a8k} D

9%D} Ajpajpadar ‘Ajduia jou si 9|id ay) so buo| sy -0iez

0} 39S AJjDI}IUI SI S8AD3| 3y} J0O jJunod ayy ‘ajid /jdws

3y} uo }i Ind pup 2243 D 13D “A[|DijiU] ‘pajUNOD UAq
124 J0u 9ADY }0Y) 934} 3y} *o spod ay) jo ajid o A3

90

. 1Nd
><._n_m_o n_.n_o......u.x<._.

INJWIHONI VILINITLNG

O¥Y3Z0L1dS ALdWNT S
INNOJ 4V3IT . Jid

; 1NdsS

| AVMY MOJHL

4VITITONISTSI

IVILINITLEO

II4LENSIHON ‘II¥1ENS1437 33Ul

SNOILVIHId0 ANV S104drdo

91

o
- 1Nnd
- AVIdSId 4407 3MVL
INIWIHONI VLLINITING
0¥3Z0113S ALdWNTSI
INNOJ V3T - J1id

AOVIOVAHALNNOD HOVIOVA TIId

1nds

AVMY MONHL
V3T ITIONISSI
VILINITIEO

| 33YiBNSTHON “IIULENSL4TT ‘3L
moﬁgﬁdmﬁ

92

AV1dSId
ININ3IHONI
0¥3Z0L13S

3dALY3INNOD
AOVIOVd JALNNOD -

ind
© 4407IVL

TVILINILNG -
ALdNTSI

3dAL3d
dDOVIOVd d'1ld

.. 1nds
AVMY MOYHL
AVITIIONISTSI
VILINTLID

3dAL 3L
FOVIOVd TIAL

93

1
QY¥3Z'0L13S
1

“JOVIOVS H3INNOD PUS

. 210ALd

{(3dALYILNNOD IO : YIINNOD) O¥3Z aunpasoud
{(3JALI"NIINNOD INO UL ¥IINNOD) INIWIUONI aJrmad0.d

{(IJALHIINNOD UL - MILNNOD) AV1dSIg @4npadoid
ro10Aud payiwy st IJALHIINNOD 294

s1 JOVHOV ¥IINNOD 9bmxo0d

93

:3OVAIVL 3341 PUd

910ALd

‘(IdALTINL 100 Ul 2 IFY1) AVMY MOYHL @1npadoud

{(3dAL33YL IN0 : OINFIHOI
‘3dAL3IUL 00 : OINITLTT -
‘IAAIIFYL 30 Ul 2 FY)) 1S d4npadold

90

INV3IT008 uIn3a.
(3dAL3IYL Ui 2 33YL) AVITITONIS'S! uoRouny

‘(3dALIIYL N0 : JFYL) IVILINGLT9 84npadoud ﬁ
‘ayoAld st JJALFFYL 2dA

S1 IOVHIOVS IT4L @bgyond

'

:JOVAOV-L Iid Pud

9j0ALd

| {(3JAL TN o ut = 440
“IdALIIUL TOVIOVS IINL IN0 : L) 440 VL eunpedsoud
{(3dAL TN o Ul 2 NO
2\ 3IUL TFOVIHIVA IINL In0 Ul 2 I3YL) TVILINILNG ainpadoud
{(3dALTId o Ul I NO
'IdALIIUL IOVHOVA IINL 0 Ul 2 33uL) Ind ainp@ao.d
'NV3I1008 uimas (IdALINd Ut Td) ALdWNISI uoiduny

to1rAud poyw s IJAL TId 24Ky

81 39VMOVd IId 8b6oxo0d
‘JOVNOV 3L YHM

97

-3dAL 3341 - 33l
‘3dAL3Ud - Fid

-3dAL 331 - 33418NS 1HON
-3dAL 331 © 33919NS 14T
“3dALCYIINNOD : INNOD JVIT

St JINLANVNIS NOSIAVITINNOD d1npadoud
‘JOVAHIVD YL ‘TJOVNIVL T ‘FOVNIVA ¥ILINNQD 2@sn
‘FJOWNIVA IFUL ‘TOVHIVL Td ‘FJOVAHIVC YILINNGCD Yim

o

3341 AMVYNIE NO SIAVITINNOD pua

‘(INNODAVAT) AVIdSIA
| ‘doo| pu?

‘)1 pua

‘(3d ‘133418NS1HO) Lnd

‘(3 ud ‘“33319NS14317) Lnd

‘(33418NSLHOW ‘33418NS 1437 *33YL) 1NdS
os|o

~4(33YL) AVMV MOYHL

:(INNOD3V3T) INFWIHONI

uayy (33¥L) JVATIONISSI H
‘((Fd ‘33YL) 440 3IAVL -
dooj (Fid) ALINI TSI 30U SIIUM
:(INNOQ VA1) 0¥3Z

{(31d ‘33¥L) WILININ
{(334L) VILINML3O
uibaq

o

4 Y
-~ ¢ s
NS

e
o/

DpPY Ui pPaz1jDaJ uaaq aADY suoljpbsado pup
sy02[qo jjp ji3un ssadoud ay} anupuoy —
sy0alqo ay) Juswa|duw| «
suoljpiado ay) aulay *
abonbub| ayj jjasinok aAlg —

a6onbupj
papualxa ayy buisn wajqoid ayj anj0g —

suonbsado
pup s309[qo ay3 buippo Aq 1Qd ay) puaix3 —
2opnds wa|qoud
9y} wouy suonoiado pup syoalqo Ajiuap| —

(00 .._.2 ‘ajlym ‘asja—uayy}—Ji ‘osod ‘dooj)
S9.4N}ONJ)S |03U0D jO }os 9}pnbapb ub sawnssy —

NOISNHLXH HDVIDNVI

100

2.1 Establish an appropriate perspective for the strategy

2.2 Write & solution to the probles in a singie paragraph

OBJECT ORIENTED DESICH

Define the problem

l1.] State the problem to be solved in a single sentence

PURPOSE:

= To gain a clear, unified understanding of the problen
by all interessted parties

- Ansvers the question: " What are we trying to do? "
GUIDELINES:

« Write a single, clear and concise sentences

- Ensuce it is grammatically correct

-~ All problems can b2 stated in a single sentence

1.2 Gather, organize, and analyse information about the |

problam

PURPOSE: |

= To gacher all icformation pertinent to understanding
and solviag the probdlem

GUIDELiNBS:
~ Gather nil pertinent information
-~ 'Can use formal analysis tools
= Include all levels of detail

~ Organize information into logical groupiags
Develop an Informal Strategy

PURPOSE:

- Gives s starting point far the informal sZrategy

PURPOSE:

. 101

(V)

- Establishes a plan of attack

- Bring! ou.t. aa appropriate level of adstraction for ‘m
solution g
- Unifies problem understamndiamg
GUIDELINES:
- Use 7 plus or minuas 2 sentences (Hrair limit)
= Write simple, clear and concise sentences T

= Grammatically correct

~ Place emphasis on writing a coherent paragraph, not
just the objects and operations

- Use a uniform level of adbstraction

- Use language appropriate for the level of abstraction
and viewpoint

= The informal strategy should be a complete solution
to the problen

~ Should be a Cescription of solution, not necessavily 1
an algorithm (*N
|

- Doesa't have to be a prize winning novel
Formalize the strategy

3.1 Identify Objects of Interest and their attributes

PURPOSE:

- To determine the abstract objects in the problem

- To determine the characteristics of the abstrvact
objects

= To determine sets of values .

J.1.1 Underline all nouns, pronouns and noun clauses
(with modifying adjectives) in the paragraph ..

PURPOSE:

- To create a list of all potential objects

GUIDELINES:

- A pnoun clause is a clause that acts as
a noun; i.e., couat of the leaves

= Ynderline all nouns

3.1,2 Place each unique noun, pronoun or noun clause
ia the column labeled OBJECT

PURPOSE:

-~ To separate potential abstract objects
3.1.3 1Identify all nouns referring to tha same object
PURPOSE:

= To unclutter the name space

3.1.4 Determine the space of each object and write it
in a column labeled SPACE

PURPOSE:
' = Determination of objects of interest
GUIDELINES:

- Soluticn space if needed to solve problem

- Problem space if needed to describe prodlem,
but not to solve it

3.1.3 List ippropriatc attributes of the objects

PURPOSE:

= Determine characteristics of abstrace
objects

GUIDELINES:
- From adjectives
- Prom gathered information

3.1.6 Select an Ada identifier for each object in the
solution space

3.1.7 Group objects that are of the same
type

PURPOSE:

103

= To visualisze the siructural equivalence of
similar objects

- To facilitate the definition of types
- To track abstrac? objects later

Identify Operations on the objects

PURPOSE:

« To determine sets of operations

3.2.1 Underline all verba, verb phrases and
predicates in the informal strategy

PURPOSE:
- Determine potentisi abstract operations
SUIDELINES:
= Predicate indicates some sort of test
followved by a ~hange in control; usually
s fora of the verd "to be"
- Also underline adverbs

= Adverbs may be acparaiod from verbs

3.2.2 Place each unique verb, verb phrase or predicate
in a column labeled OPERATION

PURPOSE:
- Separate potential operations

3.2,3 1Identify all verbs, verbd phrases and predicates
referring to the same operation

PURPOSE:
= To unclutter the operation-space

3.2.4 _bc:cr-inc the space of each operation and write
it in a column labeled SPACE

PURPOSE:

= Identification of abstract operations

3.2.5 Determine the object operated on by each

104

2
R |i

operatioo and write it in column labeled ORJECT

PURPOSE:

= Determine what object is being operated on for
each cperation

- To associate operations later with types

= To adhere to traditional design principles of
coupling and cohesion

GUIDELINES:
= All operations operate on one object
- Por an operation to operate on am object, the
" operation must be aware of the object's

underlying representation

3.2.6 Identify other objects associated with the
operation

PURPOSE:
- To use in defining parametere
- To use in definirg interfaces

3.2.7 Select an Ada ideatifier for each operation and
write it in a column labeled IDENTIFIER

PURPOSE:

- To formalize the abstract operations

3.3 FRastadblish interfaces among the objects

PURPOSE:
-~ To determine abstract data types
-~ To establish software resources
-~ To determine compilation dependencies
= To precisely define interfaces between resources

3.3.1 Group objects with operations together in one
plate

PURPOSE:

105

|-

© Yo wisvalize logi;al abstract data types

« To ease transition eﬁ program units
3.3.2 Associate a name wvith each grouping
PURPOSE:

- To formalise data cypes

- To ease trangsition to program unics
3.3.3 Define types for each grouping
PURPOSE:

« Determination of asbstract data types
3.3.4 Transform each grouping into its appropriate

program unit symbol

PURPOSE:

- To visualize softvare resources

.+ To visualize the éq}crfncci.bo:wncn software
Tesources '

3.3.5 S8how access needs betwveen program units

GUIDELINES:

- Be sure to use associated objects as keys

3.3.6 Develop ada PDL for the Booch-o-granms

PURPOSE:

- Pormalize the softvare systes
- Make use of the Ada compiler as a tool

GUIDELINES:

= Be sure to use associated objects as keys for
determining parameters

Izsplement the Objects and Operations

106

.~
<)

}4DJ24ID UD UO
sooppns Jybijy ayy jo13u0)

Em_go.& ayl auijeq 0’1l

107

@)

NOYT IV LI
HOIVAT N
[0
y3a0ny—p= A .
HOIVATTE \V \
1HoN L/

NONIV LHOM

Qib

108

"junowp Mo/ ay} ybus sappnu ay) sjonld J1 ‘asimIay)o

‘Junowp MoK ayj 1J8| JappnJ ay} sjoAld Y ‘}49| S| UoijoaIp

MDA 3y} §| ‘uoi1}oa.Ip pub Junowp mpA s3ab Jsjjosuod

Joppna ay| ‘junowp yo)d ayj umop JO}DASIS 3y} sjoAld

} ‘asimiay}o ‘junowo yoyd ayy dn JojpAaje sy} syond

} ‘dn s1 uodasIp Yo3id 8y} j| "uoOOAJIP PUD JUNOWD

- yoyd s3ab 49)|013u0D J0}DABID BY] “JUNOWID [|0J B}

dn uous|ip Jybu 9y} pup UMOP UOIB|ID tm._ oyj syond |

‘9SIMIaY)0 ‘JUNOWID |jOJ 3Y} UMOP UOQJI|ID 1ybu ayy puo dn

uoJajio Y| 8y} sjoad 31 usyy ‘Y| s! uonO3JIP |04 3y} J]
*UOI1}DaIp PUD Junow jjo4 s}ab Jsjjosjucd uoIdjID BY] .

*1JDJ2JID UD JOJ JOPPNJ PUD I0JDA3d ‘UOII|ID Jybu ‘uosa|ip

19| ayj sojpsado waysAs |0J3u0d 20DLINS u..._...m__% ay]

109

g S

‘Junowid mpA ayy Jybu Jappni ay) muoza.ﬂ_. ‘9SIMIay}o
‘JunowiD MDA ayj; }Ja| JappnJ ayj} sjoaid Y “Ya) S| UoIFO3AIIp
MDA ayj J| ‘uondalip pup Junowb Mok s3ab Jajjo1uod

Joppni ay| °‘JUNOwD yoid 9y} umop JO0JDAI[3 ay} sjoAld

7 ‘asimuayio ‘Junowd ydyd ay) dn JojpAs[e ay) sjoAld

7 ‘dn sy uondalp ydoud oy 4 .co:om.t_n puUD JUNOWD
yojd syab Jajjonuod L_30>m_m 9yl °‘JunOwD ||OJ 3y}

dn U0J9[ID JyDiJ 8y} puD uMop UOII[ID 1J3] ayy syoAld i
‘@SIMI2Y]0 ‘JUNOWID |jOJ 3y} umop U0I3|iD Jybul ay) pup dn
uoJa|Ib Y[2y} sjoAld 3 uayy ‘Ya| si UoNidaIp [0 3y
-UON}JaJip puD JUNOWD |04 s}ab 19jj0.3u0d UoIS|ID 3y
*}JDJ01ID UD 40§ JOppNJ PuUD J0IDA[S ‘UCI3|ID Jybil ‘UOIS|ID
3] oY) so)psado WSISAS [0J3U0CD 800INS DI 2yl

110

/
NOLLOIYITMVA

INNONWY MVA
43ITIOYINOTYIAANY

/
NOLLOFHIGHOLId

INNOWY HOLId
mu,_._oEzoo.mE<>u._w
NOLLO3¥IZTI0Y
INNONY T10Y
¥ITIONINOO NOYI IV

¥3aany
HOLVATT3
NOYT IV IHOI
NOYI IV 1L437

d3141LN3dl

a uvunununaunununumununumunummunom

3OVdS
®.

1!

uoijoap: "Mk
junown MpA
Jajjouod Jappnu
b
uoyoauIp - youd
junowo yosyd
13[|013U0d 10}DASID
3

uoi3oaJip*-*jio.
jJUNoWD |joJ
19[j0Jju0d UoJ3|ID
340404ID

Jappnu

JO}DA9)D

uo4a|ip ybu
uoJajID 1J9)

wiaysAs
jos3uod adouns 1ybiyy

103080

o

LA

11!

Q-

LR
K

. &
LN

‘r\.

NOILLOHId MVA
INNONY MVA
JITIOHINOD ¥y3ddNy
d3ddny

NOILO3d1d HOlld
INNOWY HOlId
JITIOHINOD ¥OLVAI 1]
| JO1VATd
NOILO3HId T10d
INNOWV T10d
JITI0HLNOIO NOHTIV
NOYITIVIHON ‘NOYFIV 1431

LSHYHALNI £0 SLOAHO

112

Junowp Mo/ ay} JYbiI sappnu ay) SJ0AId }I ‘asimuayyo
“-unowiDd MDA @y} Pa| JoppnJ 8y} S30AId)1 9] Si uoljoallp
3o> ayj} J| "uoI1jo8ap puD JunowD MDA §18D J9jj013uU0d

JappnJ 9y -junowd yoyd ay) UMOP J0}DAJ|S ayj sjoAid
J} ‘asimiay}o funowp yoyd ayy dn dn J01pA9|® 3y} SjoAld
Y| ..m.mﬁ uo139a41p yojid 8y} J| "UOIO3IIP PUD JUNOWD
yoyid SJ3D J49}|0.3U0D JOJDAB|D BY| ‘JUNOWID {0t 3L}

'dn uoJa|ip Y611 Y3} puUD UMOP UOI3|ID 3] oc.__ sjoAld)
‘9SIMI9Y]0 ‘JUNOWD ||0J 34} UMOP UOJS|ID 3ybu sy} pup dn
uoJa|iD 33| 8y} SJoAd }I uayy Y| S UORDAIIP |{0 3Y} §
*UOI)234Ip PUD JUNOWD ||04 S}BD J5||013U0D UOIS|ID BY]
*}4DJ2JID UD J0J JOpPNJ PUD 10}DA3]® ‘U0CJI|ID ybu ‘uossi|ip
}J9| @y} S33019d0 Wa}SAs [0JjU0D SIDUNS by} ayyl

h‘ N N ,

113

43aanNy
43aany
NOLLO3MId"MVA
NOLLO3NId MVA
INNONWY MVA
JOLVATId
MOIVAT1d
NOILO3YITHOLId
NOILO34IT HIlId
INNONWVHOlld

NOYITVIHOIS “L437
NOYIUVIHON ‘L4371

NOLLO3dId T10Y
NOILOFNIA TIoN

INNOWY 1104

103rg0

\
/

2;:

LNV NWY

J0VdS

ybu--sjond
M| sjond
Haj sl

s3ab

s)ob
umop-**sjoAald
dni--*sjoald
dn si

syob

syeb
umop**-sjond
dn--*sjoald
Hal s!

- syab

s}ab
sajpbuado

NOILVH3dO

114

oSt

. T evsem .

(s103rg0 d3LVIO0SSY)

(3unowC MDA,
Joppn

(unowoud}Id)
J0}OA9)9

Qc:oEq.__o.b

(3unowoTjos)

103r80

o
Y

(3ubL) Yoy -syond

(umop) a:...maow_a
c;ov_:.muoza

a:...muo>_n_

'NOILVY3dO

)

113

1HOR 10AId
143T10Ad
143781

139

139

NMOJ 10AId
d™ 10ANd
dn'si

139

139

NMOJ 10Ald
dN 10Ad
1437l
BER

139

< EIE N €]

*

aunnunununununununuunuunununuuuunnunuumonom

JOVdS

ybu---sjoad
yo| - "sjond
Hajl st

syeb

s)ab
umop---sjoad
dn---sjoad
dn s)

s)ab

s)ab
umop--"sjoaid
dn--*sjoaid
Ya| st

s3}ab

s)ab
sajosado

NOI1vVY3d0O

116

YATIONINOT qAAANH
' ¥ITIOYLNOT OIVATTH
LHOIN 10K LTSl
T LI3T1I0Nd T390
Th (L (11 NOLLOTMIA MVA
. . M .
NMOT™LOAI “ dITst
JITLOA 139
NOIVATIA NOLLOEMICHOLId
NMOQ' ._.O.>_n_ EEL R
JAL0AId 139
NONFIIVIHOM NOIOANIA'TION
‘NOUTTIV LI
@ o

mgcmbzoolzomg

139
LNNORV MVA

117

139
INNOWV HOLId

139
INNORV'TIOY

-

P
{

— . "
Ty - ’ L e
rl.lT. e . m.\ \

L43TS)
JOVIIVd MVA 139
NOLLOHHIT MV

- dn'sl

- JOVIOVH HOLId T 139

NOILLOHAId HOLId

. L43TSI
JOVIIVC 110y AP

NOLLD3YIA TI0U

139
INNONV MVX

139
LNNONV HO.lLId

139
LNAORV TIOYU

118

AATIONINOD ¥IAANA
JATIONILNOD YOLVATT
1HON 10Ad |
JOVIOVd ¥3aany 143T10AId
| dqdaany
- . NMOJ 10AId
JOVYIOVd ¥OLVAII3 dN10Ad
| | HOLVATIA
. NMOG10AId
JOVIIVd NOUI TV ~ dN10Ad
NOMITIV LHOIY
‘NONITIV 1ATT

JATIOALNOD NOYITIV

119

« P} . A)
Ler P 8 e 68 Tt e rae a B e e POl T

L4ATSI
JOVIIVA MVA B

ddAL NOLLDWJAIA

| . dfrsl
uw<v_o<n_..Io._.E Eo

ddAL NOLLOHYIA

w - 143Ts
| JOVIIVL 110 - 159
, 44 AL NOLLOFMIA

139
ddAL LNOORV

139
ddAL LNNORV

139
JdAL LNNORY

‘120

AATIOUINOI ¥aaAANd JATIONLNOD NONTTIV
JATIOYLNOD HOLVATTH |

- 1HORI10AId W

J9VIOVd d¥3aany | 143710Ad |
qdAL 4Aaanyd |

121

__ NMOQ 1ONId
JOVIOVJ HOLVATId dN"10Nd

ddAL JOLVAITH

NMOQ 1OAId

JOVNOVI NOUI IV dIT10AId
ddAL NOUATIV

i.l

m.) .
o 5 . ° ! o . ‘ .A . . - . ‘ o i
. [y’ R e ’ - ...Mw_ kS

L e m e T afie e PSS T L Sed ?i‘:l

-

J

77
7|
a7

T0¥LINOJ 3J3VHNS 1HOMA

JOVOVd d3aany

L n_a.w “
C 35]
@_ﬁ
@\ y] :o:u
JOVHIVA HOIId

[NMOT 10Ad]

— 4 mm\Ldem
C 3dATH0IVATT _MU .

39VIOVD HOLYA3 13

AIVIIVD MVA

A

—T
t—)

T0YINOT IIVIYNS LHOMS /

123

:JOVIIVS HOLId pua

ajoAud

‘NV31008 wnjal U .
(3JALNOILDFNIQ Ut : NOILOIHITHOLID) dfiSI uoiouny
'(3dALNOILDIYIA 30 : NOILOIHITHOLI) 139 84npadoad
‘(AdALINNONY INO : INNOWY HOLIM) 139 2.npadoud

‘ajoALId paywy st IJATNOILDINIQ 8dAy
$331bap —— :o¢ ** 0 @6ubJ sI IJALINNONWY dA)

S1 JOVMOVJ HOlld @60%opd

. 124

‘IOVIOVA HOLVAT 3 pus

ajoAnd

{(IJALINNONY Ut : INNOWY
‘3dATYOLVAITI N0 Ul : YOIVATII) NMOJ LOAId @1npedold
‘(3dALINNONY U! : INNONY
‘3dALYOLVATTI In0 Ul : YOIVATII) dITLOAId @4npadoud

:910ALd pajiwi) st IJALHOLVATII 24K

S1 J9VMDIV 80.1VAI13 abo)ood

JOVMIVd HOlId @sn
-JIVIIVd HILID Yim

~ |
— hl ~
) - | «..L
< . .
[- ~ B4
. . - .

125

‘FOVAOVST10Y pu?

. a30ALd

‘Nv31008 uimai
(3dALNOILOINIQ U1 : NOLLDIYIATTI0Y) 143 TSI uonouny

‘(3JALNOLLO3YIQ N0 : zo:oum_q,:omw 139 asnpadsoud
:(3dALINNONY INO-: INNOWY T10¥) 139 ainpadoud

:9)0ALId pajiw] S1 IJALNOLLOFNIQ 2dA
sealbap —— ¢ ** 0 abuou si JJALLINNONY 2dAy

SI JOVMOV 110y 2bo300d

-JOVIIVA NOYIIV pud

?joAud

‘(3JACLNNONY Ul : INNOWY
‘IJALNOYITIV N0 Ul : NOYITIV) NMOJ 10AId 3+~padoud
‘(IdALLNNONY U : INNOWY
‘AL NOYITIV 1IN0 Ul : NOYTTIV) dNLOAId ®inpadod

:930A1d pajwl st AJALNOYT NIV 2d

s| IOVMIVA NO¥I IV @boxood

-JOVAIVL 110 @sn
-JOVAIVA TI0d UM

127

JONINOT IDVIINSIHIMNS Pud
Jjnu
uibaq
t9)0.0das si YITIOHINODYIAGNY Apoq %so)

t930Jpdas S| YITIONINOTYOLVATT3 Apoq %sD}
‘ejo.odas s| YITIOULNOTNOYI IV Apoq >sD)

*HITIOHINOTHIAANY AS0y
HITIOYLINOJ HOLVAT 1 %S0}
*4ITIOYLNOI NOHI TV A#SD}

st TOMLNOD 3OVAINS 1HONS A4npadoud

128

*MITIOYINODHOLVAT T3 pud

‘dooj pua
) pud

:(LINNOWV HOLId ‘4OLVAZT3) NMOU10Ad
. os|?

t(INNOWV HOLId “401VATT3) dN"LOAId
uay} (NOLLOIYIG HOLId) dN7SIH
‘(NOILO3MIQ HOLId) 139

‘(INNOWVHOLId) 139
“ - 'dooj
. uibaq
*IJALYOLVATNT ¢ MOLVAI13

:AdALNOILO3YIA ¢ NOILO3MITHOLI
‘AdALINNONY ¢ INNOWV'HOLI

S| ¥ITIONLNOD HOLVATT3 APoq so}

(1OMINOT 30V4NNSIHOMNS) 2ypandas

‘I9VMOVA HOLI ‘FOVIOVA HOLVAT1I 8sn
‘JOVIOVA HOLId ‘OVINIV YOLVATTI YHM

t%W“MOI’ 230 070 20055 REION ND. ¢

